多尺度领域对抗多实例学习卷积神经网络(MS-DA-MIL-CNN)实战指南

多尺度领域对抗多实例学习卷积神经网络(MS-DA-MIL-CNN)实战指南

MS-DA-MIL-CNN Multi-scale Domain-adversarial Multiple Instance Learning CNN (CVPR2020) MS-DA-MIL-CNN 项目地址: https://gitcode.com/gh_mirrors/ms/MS-DA-MIL-CNN

项目介绍

MS-DA-MIL-CNN 是一个在 CVPR 2020 上发表的研究成果,由Takeuchi实验室提出。本项目旨在解决从未经标注的组织病理学图像中进行癌症亚型分类的问题。它通过一种新型方法,自动检测整张切片图像(Whole Slide Image, WSI)中的肿瘤特异性特征,这些图像通常具有超大的尺寸(如40,000x40,000像素),从而实现更精准的癌症分类。该模型利用了多尺度特性以及领域适应性技术来提高跨数据集的泛化能力。

项目快速启动

环境准备

确保你的开发环境已安装Python和PyTorch。推荐使用Anaconda或Miniconda来管理环境,并创建一个新的虚拟环境来安装依赖项。

conda create -n ms-da-mil python=3.8
conda activate ms-da-mil
pip install torch torchvision numpy matplotlib

获取源码

克隆项目到本地:

git clone https://github.com/takeuchi-lab/MS-DA-MIL-CNN.git
cd MS-DA-MIL-CNN

运行示例

由于具体命令和配置文件可能因项目更新而变化,以下仅为一个简化的示例流程。实际运行时,请参考项目内的 README.md 文件以获取最新的指令。

假设项目提供了训练脚本 train.py 和相应的配置文件,你可以这样尝试启动训练过程:

python train.py --config config_example.yaml

请注意替换 config_example.yaml 为你实际所需的配置文件路径,并确保所有必要的数据集和预处理步骤已经完成。

应用案例与最佳实践

在真实应用场景中,MS-DA-MIL-CNN可以应用于医疗影像分析的多个环节,尤其是在无标记或少量标记数据的情况下优化癌症诊断精度。最佳实践包括仔细调整模型的多尺度参数,以更好地捕获不同区域的细节;利用领域适应策略优化模型,使模型能够在不同医院或研究机构的数据之间顺利迁移。

典型生态项目

尽管本项目本身就是研究领域的创新,其间接影响可能会促进类似任务的开源工具和库的发展,比如改进的多尺度处理技术或更为通用的医学图像领域适配框架。开发者可以在其他医疗影像识别项目中借鉴其技术思路,例如集成到自动化病理分析系统中,或者作为预处理或特征提取的一部分,融入更大的机器学习工作流。


以上指南基于所提供的项目概述和一般性的开源项目启动流程。对于详细的使用方式、模型调参和案例深入探讨,请详细阅读项目文档和论文。

MS-DA-MIL-CNN Multi-scale Domain-adversarial Multiple Instance Learning CNN (CVPR2020) MS-DA-MIL-CNN 项目地址: https://gitcode.com/gh_mirrors/ms/MS-DA-MIL-CNN

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
内容概要:本文介绍了SymPy,一个用于符号数学的Python库。SymPy起源于2007年,由Ondřej Čertík和Aaron Meurer发起,现已发展成一个活跃的开源社区项目。SymPy的核心功能包括符号计算、数学表达式的解析与简化、微积分、线性代数、物理学和工程学应用、可视化、代码生成等。它支持符号变量的创建和基本代数运算,能求解方程、执行符号积分与微分、计算极限与级数、进行矩阵操作等。此外,SymPy在物理问题(如量子力学中的谐振子问题和经典力学中的运动方程)和数学问题(如函数图形和矩阵变换的可视化)的实际应用中表现出色。安装SymPy可通过pip完成,安装后可通过导入库来验证安装是否成功。SymPy与NumPy的区别在于前者专注于符号数学,后者侧重于数值计算。调试SymPy代码时,可以使用print语句、pprint函数、simplify函数以及断点和调试器等工具。 适合人群:对符号数学感兴趣的程序员、研究人员、教师和学生,尤其是那些希望在Python环境中进行数学研究和教育的人群。 使用场景及目标:①用于符号数学计算,如代数运算、微积分、解方程等;②在物理学和工程学中解析和求解微分方程;③结合Matplotlib等库进行数学表达式的可视化;④将符号表达式转换为其他编程语言的代码,适用于高性能计算和嵌入式系统。 阅读建议:由于SymPy涵盖了广泛的数学功能,建议读者从基础功能入手,逐步深入到高级应用。同时,结合实际案例和可视化工具,以更好地理解和掌握SymPy的强大功能。在学习过程中,可以利用提供的调试工具确保代码的正确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪俊炼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值