Skyrim 使用与启动教程
skyrim 🌎 🤝 AI weather models united 项目地址: https://gitcode.com/gh_mirrors/skyrim1/skyrim
1. 项目介绍
Skyrim 是一个开源项目,旨在利用消费者级 GPU 运行大规模天气模型。该项目基于最近几年开源基础模型在天气模拟数据集上的训练成果,这些模型的性能已经超越了传统的数值天气预报模型。Skyrim 提供了一个维护良好的基础设施,使得这些先进的天气模型可以被更广泛地访问和使用。
2. 项目快速启动
环境搭建
首先,您需要克隆仓库并设置环境(conda 或 virtual environment)。
git clone https://github.com/secondlaw-ai/skyrim.git
cd skyrim
pip install .
如果您需要特定的配置,可能需要创建一个 .env
文件。
cp .env.example .env
运行第一个预测
使用 Modal 进行预测(推荐)
- 获取 Modal 密钥并设置(大约需要 1 分钟)。
- 使用以下命令运行预测:
modal run skyrim/modal/forecast.py
默认情况下,这将使用 pangu 模型进行预测,从昨天开始预测接下来 6 小时的情况,并使用 NOAA GFS 作为初始条件,将预测结果写入 Modal 卷中。
在本地 GPU 上运行预测
如果您在本地拥有至少 24GB 显存的 NVIDIA GPU,可以通过以下方式直接获取预测结果:
from skyrim.core import Skyrim
model = Skyrim("pangu")
final_pred, pred_paths = model.predict(
date="20240507", # 预测起始日期,格式:YYYYMMDD
time="0000", # 预测起始时间,格式:HHMM
lead_time=24*7, # 预测时长,单位:小时
save=True
)
3. 应用案例和最佳实践
案例一:选择模型、初始条件和预报时长
使用 graphcast 模型,以 ECMWF IFS 作为初始条件,从 2024-04-30T00:00:00 开始,预报未来一周(168 小时):
forecast --model_name graphcast --initial_conditions ifs --date 20240403 --output_dir s3://skyrim-dev --lead_time 168
或者使用 Modal 运行:
modal run skyrim/modal/forecast.py --model-name graphcast --initial-conditions ifs --date 20240403 --output-dir s3://skyrim-dev --lead-time 168
案例二:仅在 AWS 中存储所需数据
如果您只对某个地区的风速感兴趣,可以只读取所需的数据:
modal run skyrim/modal/forecast.py --output-dir s3://[your_bucket]/[optional_path] --lead-time 24
然后使用以下代码读取预报:
import xarray as xr
import pandas as pd
zarr_store_path = "s3://[your_bucket]/[forecast_id]"
forecast = xr.open_dataset(zarr_store_path, engine='zarr')
df = forecast.sel(lat=37.0344, lon=27.4305, channel=['u10m', 'v10m']).to_pandas()
案例三:在 Python 中获取预测
假设您已经设置好了本地 GPU 环境:
from skyrim.core import Skyrim
model = Skyrim("pangu")
final_pred, pred_paths = model.predict(
date="20240501", # 格式:YYYYMMDD
# 其他参数...
)
4. 典型生态项目
本节将介绍与 Skyrim 相关的典型生态项目,但由于本文档的篇幅限制,具体内容将在后续文档中详细介绍。典型生态项目可能包括用于数据处理的工具、模型训练框架、可视化库等。
skyrim 🌎 🤝 AI weather models united 项目地址: https://gitcode.com/gh_mirrors/skyrim1/skyrim
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考