Spark Deep Learning 项目教程

Spark Deep Learning 项目教程

spark-deep-learningdatabricks/spark-deep-learning: 是一个用于在Apache Spark上构建深度学习管道的库。适合用于需要在大数据集上进行深度学习模型训练和部署的项目。特点是可以提供与Apache Spark的紧密集成,支持分布式训练和扩展性。项目地址:https://gitcode.com/gh_mirrors/sp/spark-deep-learning

1. 项目的目录结构及介绍

spark-deep-learning/
├── data/
├── examples/
├── python/
│   ├── sparkdl/
│   │   ├── __init__.py
│   │   ├── image/
│   │   ├── input/
│   │   ├── transformers/
│   │   └── tuning/
│   ├── setup.py
│   └── tests/
├── README.md
└── requirements.txt
  • data/: 存放示例数据文件的目录。
  • examples/: 包含使用项目的示例代码。
  • python/: 项目的主要代码目录。
    • sparkdl/: 核心模块,包含图像处理、输入处理、转换器和调优等子模块。
    • setup.py: 用于安装项目的脚本。
    • tests/: 包含项目的测试代码。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖的Python包列表。

2. 项目的启动文件介绍

项目的启动文件主要位于 python/sparkdl/ 目录下。以下是一些关键的启动文件:

  • init.py: 初始化文件,使 sparkdl 成为一个Python包。
  • image/: 包含图像处理相关的模块和函数。
  • input/: 包含输入处理相关的模块和函数。
  • transformers/: 包含数据转换相关的模块和函数。
  • tuning/: 包含模型调优相关的模块和函数。

3. 项目的配置文件介绍

项目的配置文件主要包括 setup.pyrequirements.txt

  • setup.py: 用于安装项目的脚本,定义了项目的名称、版本、依赖等信息。
  • requirements.txt: 列出了项目运行所需的Python包及其版本。

通过这些配置文件,用户可以方便地安装和管理项目的依赖。

spark-deep-learningdatabricks/spark-deep-learning: 是一个用于在Apache Spark上构建深度学习管道的库。适合用于需要在大数据集上进行深度学习模型训练和部署的项目。特点是可以提供与Apache Spark的紧密集成,支持分布式训练和扩展性。项目地址:https://gitcode.com/gh_mirrors/sp/spark-deep-learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤霞音Endurance

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值