Spark Deep Learning 项目教程
1. 项目的目录结构及介绍
spark-deep-learning/
├── data/
├── examples/
├── python/
│ ├── sparkdl/
│ │ ├── __init__.py
│ │ ├── image/
│ │ ├── input/
│ │ ├── transformers/
│ │ └── tuning/
│ ├── setup.py
│ └── tests/
├── README.md
└── requirements.txt
- data/: 存放示例数据文件的目录。
- examples/: 包含使用项目的示例代码。
- python/: 项目的主要代码目录。
- sparkdl/: 核心模块,包含图像处理、输入处理、转换器和调优等子模块。
- setup.py: 用于安装项目的脚本。
- tests/: 包含项目的测试代码。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
项目的启动文件主要位于 python/sparkdl/
目录下。以下是一些关键的启动文件:
- init.py: 初始化文件,使
sparkdl
成为一个Python包。 - image/: 包含图像处理相关的模块和函数。
- input/: 包含输入处理相关的模块和函数。
- transformers/: 包含数据转换相关的模块和函数。
- tuning/: 包含模型调优相关的模块和函数。
3. 项目的配置文件介绍
项目的配置文件主要包括 setup.py
和 requirements.txt
:
- setup.py: 用于安装项目的脚本,定义了项目的名称、版本、依赖等信息。
- requirements.txt: 列出了项目运行所需的Python包及其版本。
通过这些配置文件,用户可以方便地安装和管理项目的依赖。