Overcooked-AI 项目使用教程

Overcooked-AI 项目使用教程

overcooked_ai A benchmark environment for fully cooperative human-AI performance. overcooked_ai 项目地址: https://gitcode.com/gh_mirrors/ov/overcooked_ai

1. 项目介绍

Overcooked-AI 是一个用于完全合作的人类-AI 任务性能的基准环境,基于广受欢迎的视频游戏 Overcooked。游戏的目标是以最快的速度交付汤,每份汤需要将最多 3 种食材放入锅中,等待汤煮熟,然后由一个代理拿起汤并交付。代理应动态分配任务并有效协调以获得高奖励。

项目的主要特点包括:

  • 支持多种布局,新布局易于硬编码或通过编程生成。
  • 包含人类-人类和人类-AI 游戏数据的收集和使用。
  • 提供与环境兼容的深度强化学习(DRL)实现。
  • 支持通过环境包装器简化环境的使用。

2. 项目快速启动

安装

从 PyPI 安装

你可以使用 pip 安装预编译的 wheel 文件:

pip install overcooked-ai
从源代码安装

建议使用 conda 环境进行安装:

conda create -n overcooked_ai python=3.7
conda activate overcooked_ai
git clone https://github.com/HumanCompatibleAI/overcooked_ai.git
cd overcooked_ai
pip install -e .

如果需要 DRL 实现,可以添加 [harl] 选项:

pip install -e .[harl]

验证安装

安装完成后,可以通过运行单元测试来验证安装:

python testing/overcooked_test.py

3. 应用案例和最佳实践

案例 1:使用预训练模型进行游戏

你可以使用预训练模型来测试 Overcooked-AI 环境:

from overcooked_ai.agents import Agent
from overcooked_ai.env import OvercookedEnv

# 加载预训练模型
agent = Agent.load_from_checkpoint("path/to/checkpoint")

# 创建环境
env = OvercookedEnv()

# 运行游戏
state = env.reset()
done = False
while not done:
    action = agent.act(state)
    state, reward, done, info = env.step(action)

案例 2:自定义布局和代理

你可以通过编程生成自定义布局,并训练自定义代理:

from overcooked_ai.mdp.layout_generator import generate_random_layout
from overcooked_ai.agents import RandomAgent

# 生成随机布局
layout = generate_random_layout()

# 创建随机代理
agent1 = RandomAgent()
agent2 = RandomAgent()

# 创建环境并设置布局
env = OvercookedEnv(layout=layout)

# 运行游戏
state = env.reset()
done = False
while not done:
    action1 = agent1.act(state)
    action2 = agent2.act(state)
    state, reward, done, info = env.step([action1, action2])

4. 典型生态项目

1. Human-AI Coordination Research

Overcooked-AI 被广泛用于研究人类-AI 协作,特别是在 NeurIPS、AAMAS 和 CogSci 等顶级会议上发表的研究论文中。

2. Multi-Agent Reinforcement Learning

项目中的 human_aware_rl 模块提供了多代理强化学习的实现,支持 PPO 等算法,适用于研究多代理协作和训练。

3. Human Data Collection

Overcooked-AI 支持收集和处理人类-人类和人类-AI 游戏数据,用于训练和评估 AI 代理的协作能力。

通过这些模块和工具,Overcooked-AI 为研究者和开发者提供了一个全面的平台,用于探索和优化人类-AI 协作和多代理系统。

overcooked_ai A benchmark environment for fully cooperative human-AI performance. overcooked_ai 项目地址: https://gitcode.com/gh_mirrors/ov/overcooked_ai

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤霞音Endurance

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值