PdFwKrnlMapper:一款强大的Windows驱动映射工具

PdFwKrnlMapper:一款强大的Windows驱动映射工具

PdFwKrnlMapper An Unsigned Driver Mapper for Windows 10 22H2 -> Windows 11 23H2 that uses PdFwKrnl to exploit the Read/Write IOCTL Calls to disable DSE & PG to map the unsigned driver. PdFwKrnlMapper 项目地址: https://gitcode.com/gh_mirrors/pd/PdFwKrnlMapper

在当前数字化时代,Windows系统下的驱动映射技术对于系统优化和功能扩展至关重要。今天,我们将为您推荐一款功能强大、应用广泛的Windows驱动映射开源项目——PdFwKrnlMapper。

项目介绍

PdFwKrnlMapper 是一款专门为Windows 10 22H2至Windows 11 23H2版本设计的无签名驱动映射工具。它利用PdFwKrnl组件,通过读写IOCTL调用,禁用DSE和PG,从而实现无签名驱动的映射。

项目技术分析

PdFwKrnlMapper 的核心代码主要基于C++编写,以下是其主入口:

#include <iostream>
#include <windows.h>
#include "Bypass.h"

int main() {
    std::cout << " 初始化偏移量...\n";
    Bypass::Init(); // 初始化偏移量并缓存
    std::cout << " 初始化漏洞利用并使用PdFwKrnl加载作弊驱动...\n";
    Bypass::BypassStatus Status = Bypass::LoadCheatDriver("C:\\Driver.sys", "Driver Service Name", "C:\\Windows\\System32\\PdFwKrnl.sys", "Vuln Service Name"); // 加载作弊驱动和PdFwKrnl
    std::cout << " 状态: " << Bypass::BypassStatusToString(Status) << std::endl;
    Sleep(5000);
    driver::unload("Driver Service Name"); // 卸载作弊驱动
    return 0;
}

通过以上代码,我们可以看到PdFwKrnlMapper通过初始化偏移量、加载作弊驱动和PdFwKrnl,最终实现无签名驱动的加载和卸载。

项目及技术应用场景

PdFwKrnlMapper 的主要应用场景包括但不限于以下几方面:

  1. 系统优化:通过映射无签名驱动,可以优化Windows系统的驱动加载过程,提高系统性能。
  2. 功能扩展:利用无签名驱动映射技术,可以开发出更多具有特定功能的驱动程序,如硬件加速、自定义功能等。
  3. 安全研究:PdFwKrnlMapper 可以用于安全研究,帮助研究人员发现和修复Windows系统中的安全漏洞。

项目特点

PdFwKrnlMapper 具有以下显著特点:

  1. 跨版本支持:兼容Windows 10 22H2至Windows 11 23H2版本,具有广泛的适用性。
  2. 高效稳定:通过读写IOCTL调用,实现快速、稳定的驱动映射。
  3. 易于使用:项目提供了清晰的API接口和示例代码,方便用户快速上手和使用。

总结来说,PdFwKrnlMapper 是一款功能强大、应用广泛的Windows驱动映射工具,无论是系统优化、功能扩展还是安全研究,都能发挥出巨大的价值。我们强烈推荐对Windows驱动映射感兴趣的读者尝试使用PdFwKrnlMapper,体验其带来的便利与高效。

PdFwKrnlMapper An Unsigned Driver Mapper for Windows 10 22H2 -> Windows 11 23H2 that uses PdFwKrnl to exploit the Read/Write IOCTL Calls to disable DSE & PG to map the unsigned driver. PdFwKrnlMapper 项目地址: https://gitcode.com/gh_mirrors/pd/PdFwKrnlMapper

数据集介绍:多品类农产品目标检测数据集 一、基础信息 数据集名称:多品类农产品目标检测数据集 图片数量: - 训练集:5,744张图片 - 验证集:546张图片 - 测试集:271张图片 总计:6,561张农业场景图片 分类类别: 覆盖33种常见农产品,包括苹果、香蕉、胡萝卜、番茄、西瓜等主流果蔬,以及甜椒、花椰菜、生姜、大豆等特色农作物,完整涵盖从根茎类到叶菜类的多样化需求。 标注格式: YOLO格式标注,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 农业场景实拍图像,包含自然光照条件下的单目标与多目标检测场景,适用于真实农业环境下的模型训练。 二、适用场景 农业自动化分拣系统: 为果蔬分拣机器人提供视觉识别能力,支持多品类农产品同步检测,提升自动化产线分拣效率。 智能零售库存管理: 赋能商超智能货架系统,实现农产品自动识别与库存统计,优化生鲜商品周转管理。 精准农业研究: 支持农作物生长监测AI系统开发,通过田间图像实时检测作物分布与成熟度。 农业教育实训: 可作为农业院校AI+农学交叉学科的教学资源,培养智慧农业领域的复合型人才。 三、数据集优势 全品类覆盖: 包含33类全球主流农产品,特别涵盖辣椒、茄子、萝卜等易混淆品种,满足精细化检测需求。 真实场景适配: 数据采集自实际农业环境,包含果蔬堆叠、部分遮挡等复杂场景,确保模型落地实用性。 标注专业化: 采用农业专家参与标注的质量控制机制,边界框精准匹配农产品形态特征。 框架兼容性: 原生支持YOLO系列模型训练,提供.txt标注文件与图像文件的规范目录结构,开箱即用。 应用扩展性强: 除目标检测外,可通过标注转换支持农产品计数、体积估算等衍生应用场景开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奚书芹Half-Dane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值