HuggingFace PEFT项目中的LoRA类方法实战指南

HuggingFace PEFT项目中的LoRA类方法实战指南

peft 🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. peft 项目地址: https://gitcode.com/gh_mirrors/pe/peft

前言

在大型模型微调领域,参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术正变得越来越重要。本文将深入探讨HuggingFace PEFT项目中基于LoRA(Low-Rank Adaptation)的一系列方法,包括标准LoRA及其变种LoHa、LoKr和AdaLoRA,并通过一个实际的图像分类任务展示如何使用这些方法。

LoRA方法概述

核心思想

LoRA类方法的核心理念是通过低秩分解(Low-Rank Decomposition)技术,在原始模型的权重矩阵上添加可训练的小矩阵,而非直接微调整个大型模型。这种方法显著减少了需要训练的参数数量,从而降低了内存消耗和计算成本。

主要优势

  1. 参数高效:通常只需训练原模型参数的0.1%-1%
  2. 内存友好:大幅降低GPU内存需求
  3. 训练快速:收敛速度比全参数微调更快
  4. 模块化:可针对特定模块进行适配

准备工作

安装依赖

pip install -q peft transformers datasets

数据集准备

我们使用Food-101数据集,包含101类食物图片。首先加载数据集并进行预处理:

from datasets import load_dataset

ds = load_dataset("food101")

# 创建标签映射
labels = ds["train"].features["label"].names
label2id = {label: i for i, label in enumerate(labels)}
id2label = {i: label for i, label in enumerate(labels)}

图像预处理

使用ViT模型的图像处理器进行标准化处理:

from transformers import AutoImageProcessor

image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")

# 定义训练和验证的数据增强
train_transforms = Compose([
    RandomResizedCrop(image_processor.size["height"]),
    RandomHorizontalFlip(),
    ToTensor(),
    Normalize(image_processor.image_mean, image_processor.image_std)
])

模型配置

基础模型

加载预训练的ViT模型作为基础模型:

from transformers import AutoModelForImageClassification

model = AutoModelForImageClassification.from_pretrained(
    "google/vit-base-patch16-224-in21k",
    label2id=label2id,
    id2label=id2label,
    ignore_mismatched_sizes=True
)

PEFT方法详解

1. 标准LoRA方法

LoRA将权重更新矩阵分解为两个低秩矩阵的乘积:

from peft import LoraConfig, get_peft_model

config = LoraConfig(
    r=16,                  # 低秩矩阵的秩
    lora_alpha=16,        # 缩放因子
    target_modules=["query", "value"],  # 目标模块
    lora_dropout=0.1,     # Dropout率
    bias="none",          # 是否训练偏置
    modules_to_save=["classifier"]  # 额外训练的分类器
)
peft_model = get_peft_model(model, config)

特点

  • 最简单的LoRA实现
  • 参数效率高
  • 适合大多数场景

2. LoHa方法

LoHa(Low-Rank Hadamard Product)使用Hadamard乘积组合四个小矩阵:

from peft import LoHaConfig

config = LoHaConfig(
    r=16,
    alpha=16,
    target_modules=["query", "value"],
    module_dropout=0.1,
    modules_to_save=["classifier"]
)

特点

  • 保持相同参数量的情况下获得更高秩
  • 理论上表达能力更强
  • 计算开销略大于标准LoRA

3. LoKr方法

LoKr(Low-Rank Kronecker Product)使用Kronecker乘积构建块矩阵:

from peft import LoKrConfig

config = LoKrConfig(
    r=16,
    alpha=16,
    target_modules=["query", "value"],
    module_dropout=0.1,
    modules_to_save=["classifier"]
)

特点

  • 能更好地保持原始矩阵的秩
  • 参数效率极高
  • 适合资源极度受限的场景

4. AdaLoRA方法

AdaLoRA(Adaptive Low-Rank Adaptation)动态分配参数预算:

from peft import AdaLoraConfig

config = AdaLoraConfig(
    r=8,
    init_r=12,
    tinit=200,
    tfinal=1000,
    deltaT=10,
    target_modules=["query", "value"],
    modules_to_save=["classifier"]
)

特点

  • 动态调整各模块的参数分配
  • 对重要模块分配更多参数
  • 需要自定义训练循环

训练配置

使用Transformers的Trainer进行训练:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./output",
    per_device_train_batch_size=128,
    learning_rate=5e-3,
    num_train_epochs=5,
    fp16=True,
    evaluation_strategy="epoch",
    save_strategy="epoch"
)

trainer = Trainer(
    model=peft_model,
    args=training_args,
    train_dataset=train_ds,
    eval_dataset=val_ds,
    data_collator=collate_fn
)

trainer.train()

模型推理

训练完成后,可以轻松加载模型进行推理:

from peft import PeftModel

# 加载基础模型
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k")

# 加载PEFT适配器
peft_model = PeftModel.from_pretrained(model, "your-username/your-peft-model")

# 进行推理
with torch.no_grad():
    outputs = peft_model(**inputs)
    predictions = outputs.logits.argmax(-1)

性能对比

下表比较了不同PEFT方法的参数效率:

| 方法 | 可训练参数 | 总参数 | 可训练占比 | |---------|------------|----------|------------| | 全参数 | 86M | 86M | 100% | | LoRA | 0.67M | 86.54M | 0.77% | | LoHa | 1.26M | 87.13M | 1.44% | | LoKr | 0.12M | 87.17M | 0.13% | | AdaLoRA | 0.52M | 87.61M | 0.59% |

最佳实践建议

  1. 秩的选择:通常从8或16开始,根据效果调整
  2. 目标模块:注意力层的query和value通常是好的起点
  3. 学习率:可以比全参数微调大5-10倍
  4. 批大小:由于参数效率高,可以使用更大的批大小
  5. 分类器:通常需要微调最后的分类器层

结语

PEFT中的LoRA类方法为大型模型微调提供了高效的解决方案。通过本文的实践指南,开发者可以根据具体需求选择合适的LoRA变体,在保持模型性能的同时显著降低计算成本。无论是资源受限的环境还是需要快速迭代的场景,这些方法都能提供出色的平衡。

peft 🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. peft 项目地址: https://gitcode.com/gh_mirrors/pe/peft

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奚书芹Half-Dane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值