rpi-opencv 项目使用教程
1. 项目的目录结构及介绍
rpi-opencv/
├── LICENSE
├── README.md
├── car-detection-stream.py
├── check-color-hsv.py
├── color-1.py
├── color-2.py
├── color-3.py
├── color-4-thread.py
├── color-4.py
├── color-5.py
├── color-6.py
├── color-7.py
├── crash-480.mp4
├── face-detection.py
├── haar-detection-stream.py
├── haar-detection.py
├── motion-detection.py
├── object-tracking.py
├── people-detection.py
├── roomba.mp4
└── slung-load.mp4
目录结构介绍
- LICENSE: 项目的开源许可证文件,采用 GPL-3.0 许可证。
- README.md: 项目的说明文件,包含项目的基本信息、使用方法和性能测试结果。
- car-detection-stream.py: 用于车辆检测的 Python 脚本。
- check-color-hsv.py: 用于颜色检测的 Python 脚本,基于 HSV 颜色空间。
- color-1.py 至 color-7.py: 一系列用于颜色跟踪的 Python 脚本,分别对应不同的颜色检测算法。
- crash-480.mp4 和 roomba.mp4: 示例视频文件,用于测试和演示。
- face-detection.py: 用于人脸检测的 Python 脚本。
- haar-detection-stream.py 和 haar-detection.py: 基于 Haar 特征的检测脚本,用于对象检测。
- motion-detection.py: 用于运动检测的 Python 脚本。
- object-tracking.py: 用于对象跟踪的 Python 脚本。
- people-detection.py: 用于行人检测的 Python 脚本。
- slung-load.mp4: 另一个示例视频文件,用于测试和演示。
2. 项目的启动文件介绍
项目中的启动文件主要是各种 Python 脚本,用于执行不同的计算机视觉任务。以下是一些主要的启动文件及其功能介绍:
- car-detection-stream.py: 启动车辆检测任务。
- check-color-hsv.py: 启动颜色检测任务,基于 HSV 颜色空间。
- face-detection.py: 启动人脸检测任务。
- motion-detection.py: 启动运动检测任务。
- object-tracking.py: 启动对象跟踪任务。
- people-detection.py: 启动行人检测任务。
这些脚本可以直接在 Raspberry Pi 上运行,通过命令行执行,例如:
python3 car-detection-stream.py
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过修改 Python 脚本中的参数来调整任务的配置。例如,在 check-color-hsv.py
中,可以修改颜色阈值来适应不同的颜色检测需求。
# 示例:修改颜色阈值
lower_color = np.array([0, 100, 100])
upper_color = np.array([10, 255, 255])
通过这种方式,用户可以根据具体需求调整项目的配置。
以上是 rpi-opencv
项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。