HyperLPR3 Android SDK 使用教程
项目地址:https://gitcode.com/gh_mirrors/hy/hyperlpr3-android-sdk
1. 项目介绍
HyperLPR3 是一个基于深度学习的高性能中文车牌识别框架,专为 Android 平台设计。该项目提供了完整的 Android SDK,使得开发者可以轻松地将车牌识别功能集成到自己的应用中。HyperLPR3 支持多种类型车牌的识别,包括新能源车牌、使馆车牌、教练车牌等,具有高识别率和快速响应的特点。
2. 项目快速启动
2.1 添加依赖
首先,在你的 Android 项目中添加 Jitpack 依赖:
allprojects {
repositories {
maven { url 'https://jitpack.io' }
}
}
然后在需要使用 HyperLPR3 的模块中添加依赖:
dependencies {
implementation 'com.github.HyperInspire:hyperlpr3-android-sdk:1.0.3'
}
2.2 初始化 HyperLPR3
在应用启动时初始化 HyperLPR3:
// 车牌识别算法配置参数
HyperLPRParameter parameter = new HyperLPRParameter()
.setDetLevel(HyperLPR3.DETECT_LEVEL_LOW)
.setMaxNum(1)
.setRecConfidenceThreshold(0.85f);
// 初始化 (仅执行一次)
HyperLPR3.getInstance().init(this, parameter);
2.3 使用车牌识别功能
2.3.1 识别 Bitmap 图像
使用 Bitmap 图像进行车牌识别:
// 使用 Bitmap 作为图片参数进行车牌识别
Plate[] plates = HyperLPR3.getInstance().plateRecognition(bitmap, HyperLPR3.CAMERA_ROTATION_0, HyperLPR3.STREAM_BGRA);
for (Plate plate : plates) {
// 打印检测到的车牌号
Log.i(TAG, plate.getCode());
}
2.3.2 识别流数据
使用摄像头流或文件流进行车牌识别:
// 使用 NV21 流数据进行车牌识别
Plate[] plates = HyperLPR3.getInstance().plateRecognition(data, previewSize.height, previewSize.width, HyperLPR3.CAMERA_ROTATION_270, HyperLPR3.STREAM_YUV_NV21);
3. 应用案例和最佳实践
3.1 停车场管理系统
在停车场管理系统中,HyperLPR3 可以用于自动识别进出车辆的车牌号,实现自动计费和车辆进出记录。通过集成 HyperLPR3,系统可以快速准确地识别车牌,提高管理效率。
3.2 交通监控系统
在交通监控系统中,HyperLPR3 可以用于实时监控道路上的车辆,识别违章车辆的车牌号,并自动记录违章信息。这有助于提高交通管理的智能化水平。
3.3 车辆租赁系统
在车辆租赁系统中,HyperLPR3 可以用于自动识别租赁车辆的车牌号,实现车辆的自动登记和归还。这可以简化租赁流程,提高用户体验。
4. 典型生态项目
4.1 HyperLPR 中文车牌识别开源框架
HyperLPR 是一个高性能的中文车牌识别开源框架,支持多种平台,包括 Android、Linux 和 MacOS。HyperLPR3 是 HyperLPR 的 Android SDK 实现,提供了在 Android 平台上进行车牌识别的功能。
4.2 OpenCV
OpenCV 是一个开源的计算机视觉库,广泛应用于图像处理和计算机视觉领域。HyperLPR3 在实现车牌识别功能时,使用了 OpenCV 进行图像预处理和特征提取。
4.3 MNN
MNN 是一个轻量级的深度学习推理引擎,适用于移动设备和嵌入式设备。HyperLPR3 使用 MNN 进行深度学习模型的推理,以实现高效的车牌识别。
通过以上模块的介绍,开发者可以快速上手并集成 HyperLPR3 到自己的 Android 应用中,实现高性能的车牌识别功能。
hyperlpr3-android-sdk 项目地址: https://gitcode.com/gh_mirrors/hy/hyperlpr3-android-sdk