ASAM 开源项目教程

ASAM 开源项目教程

ASAMImplementation of ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks, ICML 2021.项目地址:https://gitcode.com/gh_mirrors/as/ASAM

项目介绍

ASAM(Association for Standardization of Automation and Measuring Systems)是一个致力于标准化自动化和测量系统的组织。该项目旨在为汽车行业提供标准化的解决方案,特别是在模拟测试领域。通过ASAM,行业专家可以共同开发和维护一系列标准,以支持自动驾驶功能的模拟测试。

项目快速启动

环境准备

在开始之前,请确保您的开发环境已安装以下工具:

  • Git
  • Python 3.x
  • 任何文本编辑器或IDE(如 VSCode, PyCharm)

克隆项目

首先,克隆项目到本地:

git clone https://github.com/SamsungLabs/ASAM.git
cd ASAM

安装依赖

安装项目所需的依赖:

pip install -r requirements.txt

运行示例

运行一个简单的示例来验证安装是否成功:

python examples/simple_example.py

应用案例和最佳实践

应用案例

ASAM 标准已被广泛应用于多个领域,包括但不限于:

  • 自动驾驶模拟测试:使用 OpenSCENARIO 和 OpenDRIVE 标准进行场景模拟。
  • 传感器模拟:利用 OpenCRG 和 OSI 标准进行传感器数据的模拟和验证。

最佳实践

  • 标准化流程:确保所有开发和测试流程遵循 ASAM 标准,以提高互操作性和可维护性。
  • 持续集成:使用 CI/CD 工具自动化测试和部署流程,确保代码质量和一致性。

典型生态项目

ASAM 项目与其他开源项目和工具紧密集成,形成了丰富的生态系统:

  • OpenDRIVE:用于定义道路网络的标准。
  • OpenSCENARIO:用于定义动态驾驶场景的标准。
  • OSI:用于传感器数据接口的标准。

这些项目共同支持了从模拟到实际测试的全流程,为自动驾驶技术的开发提供了坚实的基础。

ASAMImplementation of ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks, ICML 2021.项目地址:https://gitcode.com/gh_mirrors/as/ASAM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左萱莉Maude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值