ReaLHF:优化LLM的RLHF训练效率

ReaLHF:优化LLM的RLHF训练效率

ReaLHF Super-Efficient RLHF Training of LLMs with Parameter Reallocation ReaLHF 项目地址: https://gitcode.com/gh_mirrors/re/ReaLHF

项目介绍

ReaLHF是一个专门为大型语言模型(LLM)设计的高效分布式系统,旨在通过参数重分配技术优化强化学习人类反馈(RLHF)的训练过程。该项目是ICML 2024会议论文《Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study》中实验的运行库。ReaLHF的核心创新在于提出了参数重分配方法,该方法可以动态地在集群中重新分配LLM参数,并根据计算工作负载调整并行化策略,从而显著提高了PPO训练吞吐量。

项目技术分析

ReaLHF通过引入参数重分配方法,使得模型在训练过程中能够根据需要动态调整参数的分配,这在处理大规模模型时尤为重要。该系统支持大规模和高通量的SFT、奖励建模、DPO、PPO以及生成任务,并且兼容MoE模型训练和生成。ReaLHF还集成了一系列PPO技巧,如GAE、优势/值标准化以及参考EMA,并支持最先进的RLHF算法,例如GRPO。

ReaLHF的技术架构支持3D并行ism,利用CUDAGraph进行高效生成,并采用参数和优化器卸载技术实现内存高效训练。此外,ReaLHF能够无缝集成HuggingFace checkpoints和vLLM推断框架,无需转换checkpoint,极大简化了用户的使用过程。

项目及技术应用场景

ReaLHF适合在以下场景中使用:

  • 大规模语言模型训练:对于需要大量计算资源的大型语言模型,ReaLHF能够有效地利用分布式系统,提高训练效率。
  • RLHF算法研究:研究人员可以利用ReaLHF进行RLHF算法的实验和研究,探索不同的并行化和参数分配策略对模型性能的影响。
  • 生产环境部署:ReaLHF的高效性能使其适合在生产环境中部署,为各种语言模型应用提供高效的训练和生成能力。

项目特点

效率

  • 参数重分配:ReaLHF利用参数重分配技术实现最佳并行化策略,提高训练吞吐量。
  • CUDAGraph和3D并行ism:通过CUDAGraph和3D并行ism,ReaLHF支持大规模训练和高效生成。
  • 参数和优化器卸载:ReaLHF通过卸载技术和内存优化,使训练更加高效。

易用性

  • 无缝集成:ReaLHF可以与HuggingFace checkpoints和vLLM框架无缝集成,无需转换。
  • 快速启动:通过Ray或SLURM,ReaLHF可以轻松启动本地或分布式实验。

灵活性

  • 配置自定义:ReaLHF提供灵活的配置选项,支持多种RLHF算法,并允许用户添加自定义算法。

ReaLHF作为一个开源项目,已经提供了预构建的Docker镜像和PyPI包,安装和使用都非常方便。用户可以通过阅读官方文档和教程快速上手,开始自己的LLM训练任务。

ReaLHF项目的引入,为RLHF训练提供了新的视角和工具,有望推动大型语言模型训练的发展,并为相关领域的研究和应用提供更多可能性。对于对大规模语言模型训练感兴趣的研究人员和技术人员,ReaLHF无疑是一个值得尝试的开源项目。

ReaLHF Super-Efficient RLHF Training of LLMs with Parameter Reallocation ReaLHF 项目地址: https://gitcode.com/gh_mirrors/re/ReaLHF

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左萱莉Maude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值