clownfish:让大型语言模型紧跟JSON Schema的神奇工具

clownfish:让大型语言模型紧跟JSON Schema的神奇工具

clownfish Constrained Decoding for LLMs against JSON Schema clownfish 项目地址: https://gitcode.com/gh_mirrors/cl/clownfish

在当今科技快速发展的时代,如何让大型语言模型(LLM)如GPT系列更加安全、高效地服务于我们的需求,是一个值得深入研究的课题。今天,我要为大家推荐一个开源项目——clownfish,它通过一种巧妙的方法,让LLM遵循特定的JSON Schema,从而避免了错误的生成和潜在的危险行为。

项目介绍

clownfish是一个旨在解决LLM在生成文本时可能出现的错误和危险行为的创新项目。它通过在LLM的输出过程中引入一个名为“ControLogits”的层,实现了对生成内容的实时约束。这种方法允许LLM在生成过程中,始终遵循一个预定义的JSON Schema,从而确保输出内容的正确性和安全性。

项目技术分析

clownfish的核心技术是ControLogits,它是一个算法ic的Logit处理器,可以在LLM的生成过程中动态调整概率分布。这种技术借鉴了ControlNet的概念,通过在LLM的输出层增加一个算法ic的处理层,实现了对生成内容的精细控制。

ControLogits的工作原理是,它首先接收一个JSON Schema作为输入,然后在LLM生成文本的过程中,不断检查当前候选token是否符合这个Schema。如果不符合,ControLogits会调整概率分布,使得符合Schema的token更有可能被选中。

项目及应用场景

clownfish的应用场景非常广泛。以下是一些典型的应用案例:

  1. 数据查询优化:在处理复杂的数据查询时,clownfish可以帮助LLM生成符合数据库Schema的查询语句,从而避免了错误的查询和低效的执行计划。

  2. 代码生成:在使用LLM生成代码时,clownfish可以确保生成的代码符合预定义的代码规范和框架,从而减少错误和提高代码质量。

  3. 交互式聊天:在构建交互式聊天机器人时,clownfish可以确保机器人的回答符合预期的格式和内容,从而提高用户体验。

  4. 安全防护:在处理用户输入时,clownfish可以防止恶意输入导致的潜在安全风险,如SQL注入等。

项目特点

  1. 灵活性:clownfish允许用户自定义JSON Schema,以满足不同场景下的需求。

  2. 安全性:通过实时检查和调整,clownfish确保了生成内容的正确性和安全性。

  3. 易用性:clownfish的设计简单,易于集成到现有的LLM框架中。

  4. 高效性:clownfish利用了LLM的高效生成能力,同时通过算法ic的优化,减少了错误和风险。

综上所述,clownfish是一个非常有价值的项目,它不仅提高了LLM的安全性和可靠性,还为各种应用场景提供了强大的支持。如果你正在寻找一种方法来优化LLM的生成过程,或者确保生成内容的安全性和正确性,那么clownfish绝对值得一试。

clownfish Constrained Decoding for LLMs against JSON Schema clownfish 项目地址: https://gitcode.com/gh_mirrors/cl/clownfish

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左萱莉Maude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值