图自编码器(GAE)项目教程

图自编码器(GAE)项目教程

gaeImplementation of Graph Auto-Encoders in TensorFlow项目地址:https://gitcode.com/gh_mirrors/ga/gae

项目介绍

图自编码器(Graph Autoencoder, GAE)是一个用于无监督学习的图表示方法。它通过学习节点的低维向量表示来重构图的边。GAE 项目由 Thomas Kipf 开发,基于 PyTorch 实现,旨在提供一个高效且易于使用的图自编码器框架。

项目快速启动

安装依赖

首先,确保你已经安装了 Python 3.6 或更高版本,然后安装必要的依赖包:

pip install torch numpy scipy

克隆项目

克隆 GAE 项目到本地:

git clone https://github.com/tkipf/gae.git
cd gae

运行示例

项目中包含一个示例脚本 train.py,可以用来训练和测试 GAE 模型。运行以下命令来启动示例:

python train.py

应用案例和最佳实践

应用案例

GAE 在多个领域都有广泛的应用,包括社交网络分析、生物信息学和推荐系统等。例如,在社交网络中,GAE 可以用来发现社区结构或预测社交关系。

最佳实践

  1. 数据预处理:确保输入图数据是标准化的,例如使用归一化邻接矩阵。
  2. 超参数调整:调整学习率、隐藏层大小和正则化参数等,以获得最佳性能。
  3. 模型评估:使用交叉验证和不同的评估指标(如 AUC、AP)来评估模型性能。

典型生态项目

变分图自编码器(VGAE)

VGAE 是 GAE 的一个变体,引入了变分推断的概念,用于处理图的生成问题。VGAE 在 GAE 的基础上增加了潜在变量,使得模型能够更好地捕捉图的结构信息。

PyTorch Geometric

PyTorch Geometric 是一个基于 PyTorch 的几何深度学习库,提供了丰富的图神经网络模型和工具。GAE 可以与 PyTorch Geometric 结合使用,以实现更复杂的图学习任务。

通过以上内容,您可以快速了解并开始使用 GAE 项目,同时探索其在不同领域的应用和最佳实践。

gaeImplementation of Graph Auto-Encoders in TensorFlow项目地址:https://gitcode.com/gh_mirrors/ga/gae

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
自编码器(Graph Autoencoder,简称GAE)是一种用于学习形数据表示的无监督学习方法,它将形数据表示为低维嵌入向量。变分自编码器(Variational Graph Autoencoder,简称VGAE)是一种改进的GAE,它使用变分推断来学习潜在嵌入的概率分布。下面是使用Python实现GAE和VGAE的示例代码: 1. GAE代码: ```python import numpy as np import tensorflow as tf class GraphAutoencoder(object): def __init__(self, n_input, n_hidden): self.n_input = n_input self.n_hidden = n_hidden self.weights = { 'encoder': tf.Variable(tf.random_normal([n_input, n_hidden])), 'decoder': tf.Variable(tf.random_normal([n_hidden, n_input])) } self.biases = { 'encoder': tf.Variable(tf.random_normal([n_hidden])), 'decoder': tf.Variable(tf.random_normal([n_input])) } self.inputs = tf.placeholder(tf.float32, [None, n_input]) self.encoder = tf.nn.sigmoid(tf.add(tf.matmul(self.inputs, self.weights['encoder']), self.biases['encoder'])) self.decoder = tf.nn.sigmoid(tf.add(tf.matmul(self.encoder, self.weights['decoder']), self.biases['decoder'])) self.cost = tf.reduce_mean(tf.pow(self.inputs - self.decoder, 2)) self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(self.cost) def train(self, X, epochs=1000): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(epochs): _, cost = sess.run([self.optimizer, self.cost], feed_dict={self.inputs: X}) if epoch % 100 == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost)) self.weights['encoder'] = sess.run(self.weights['encoder']) self.weights['decoder'] = sess.run(self.weights['decoder']) self.biases['encoder'] = sess.run(self.biases['encoder']) self.biases['decoder'] = sess.run(self.biases['decoder']) return self def transform(self, X): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) encoder_output = sess.run(self.encoder, feed_dict={self.inputs: X}) return encoder_output ``` 2. VGAE代码: ```python import numpy as np import tensorflow as tf class VariationalGraphAutoencoder(object): def __init__(self, n_input, n_hidden): self.n_input = n_input self.n_hidden = n_hidden self.weights = { 'encoder_mean': tf.Variable(tf.random_normal([n_input, n_hidden])), 'encoder_stddev': tf.Variable(tf.random_normal([n_input, n_hidden])), 'decoder': tf.Variable(tf.random_normal([n_hidden, n_input])) } self.biases = { 'encoder_mean': tf.Variable(tf.random_normal([n_hidden])), 'encoder_stddev': tf.Variable(tf.random_normal([n_hidden])), 'decoder': tf.Variable(tf.random_normal([n_input])) } self.inputs = tf.placeholder(tf.float32, [None, n_input]) self.encoder_mean = tf.add(tf.matmul(self.inputs, self.weights['encoder_mean']), self.biases['encoder_mean']) self.encoder_stddev = tf.add(tf.matmul(self.inputs, self.weights['encoder_stddev']), self.biases['encoder_stddev']) eps = tf.random_normal(tf.shape(self.encoder_stddev), dtype=tf.float32, mean=0., stddev=1.0, name='epsilon') self.encoder_output = tf.add(self.encoder_mean, tf.multiply(tf.sqrt(tf.exp(self.encoder_stddev)), eps)) self.decoder = tf.nn.sigmoid( tf.add(tf.matmul(self.encoder_output, self.weights['decoder']), self.biases['decoder'])) self.cost = self.get_cost() self.optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(self.cost) def get_cost(self): kl_divergence = -0.5 * tf.reduce_sum( 1 + 2 * self.encoder_stddev - tf.square(self.encoder_mean) - tf.exp(2 * self.encoder_stddev), 1) reconstruction_loss = -tf.reduce_sum( self.inputs * tf.log(1e-10 + self.decoder) + (1 - self.inputs) * tf.log(1e-10 + 1 - self.decoder), 1) cost = tf.reduce_mean(reconstruction_loss + kl_divergence) return cost def train(self, X, epochs=1000): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(epochs): _, cost = sess.run([self.optimizer, self.cost], feed_dict={self.inputs: X}) if epoch % 100 == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost)) self.weights['encoder_mean'] = sess.run(self.weights['encoder_mean']) self.weights['encoder_stddev'] = sess.run(self.weights['encoder_stddev']) self.weights['decoder'] = sess.run(self.weights['decoder']) self.biases['encoder_mean'] = sess.run(self.biases['encoder_mean']) self.biases['encoder_stddev'] = sess.run(self.biases['encoder_stddev']) self.biases['decoder'] = sess.run(self.biases['decoder']) return self def transform(self, X): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) encoder_output = sess.run(self.encoder_output, feed_dict={self.inputs: X}) return encoder_output ``` 希望对你有所帮助!接下来是三个相关问题:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗韵列Ivan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值