NeuS2:神经隐式曲面的快速学习方法
NeuS2 [ICCV 2023] Official code for NeuS2 项目地址: https://gitcode.com/gh_mirrors/ne/NeuS2
1. 项目介绍
NeuS2 是一款用于多视图重建的神经表面重构方法,由 Yiming Wang 等人在 ICCV 2023 上发表。相比其前身 NeuS,它实现了数量级的训练速度提升,同时保持了重建质量。NeuS2 通过集成多分辨率哈希编码到神经表面表示中,并在 CUDA 中实现整个算法来加速。此外,该方法扩展以支持动态场景重建,采用增量训练策略。项目基于 Instant-NGP 进一步改进,支持静态及动态场景的快速建模。
2. 项目快速启动
克隆仓库与安装环境
首先,你需要克隆 NeuS2 项目及其所有子模块:
git clone --recursive https://github.com/19reborn/NeuS2
cd NeuS2
然后,利用 CMake 构建项目:
cmake -B build
cmake --build build --config RelWithDebInfo -j
对于 Python 使用,确保创建并激活名为 neus2
的 Conda 环境,并安装依赖项:
conda create -n neus2 python=3.9
conda activate neus2
pip install -r requirements.txt
之后,根据系统配置可能需要安装 PyTorch 和 PyTorch3D。
快速训练示例
以 DTU 数据集上的静态场景为例,你可以这样开始训练:
python scripts/run.py --scene $[数据路径]/transform.json --name $[实验名] --network dtu.json --n_steps 15000
3. 应用案例和最佳实践
- 静态场景重建:NeuS2 能在短短5分钟内完成表面重建,例如“static-scene-lego-5min.mp4”展示了从多视图图像到自由视角合成的转换。
- 动态场景重建:适用于快速重建序列图像中的动态对象,如“dynamic-scene-dynacap.mp4”。通过指定不同的训练参数和配置文件,可以达到高效的重建效果。
示例步骤
- 准备好相应的多视图数据。
- 使用提供的配置文件作为基础,调整训练步数等关键参数,以适应特定场景需求。
- 运行对应的脚本,比如
run.py
或run_dynamic.py
,指定正确的场景描述文件和配置。
4. 典型生态项目
NeuS2 与即时图形处理技术密切相关,特别是在多视图重建领域。虽然这个项目本身就是一个独特的贡献,但它的生态联系包括但不限于 Instant-NGP,两者共同推动了神经图形学的发展,尤其是在高效重建模型方面。开发者和研究人员可以结合其他类似项目(如神经渲染器的最新进展),探索更多高级应用,例如实时场景交互与虚拟现实内容创作。
NeuS2 通过其灵活的架构设计和优化的计算策略,为多变的场景重建任务提供了强大的工具集。开发者可借鉴其技术和最佳实践,进一步推动计算机视觉与图形学领域的边界。
本教程旨在提供一个快速入门 NeuS2 开源项目的指南,详细的操作流程及更深层次的定制化使用需参考项目官方文档和社区资源。
NeuS2 [ICCV 2023] Official code for NeuS2 项目地址: https://gitcode.com/gh_mirrors/ne/NeuS2