《LandMark项目安装与配置指南》
LandMark 项目地址: https://gitcode.com/gh_mirrors/la/LandMark
1. 项目基础介绍
LandMark 是一个开源项目,旨在实现大规模真实世界城市场景的三维建模和渲染。该项目基于 GridNeRF(CVPR23)构建,提供了高效的训练和渲染算法,以及对原有算法的优化。LandMark 支持大规模、高质量的视图渲染,并且可以实现场景布局的调整和风格化。
主要编程语言:Python
2. 项目使用的关键技术和框架
- GridNeRF:用于神经场景渲染的模型,LandMark 在此基础上进行了并行化、算子优化和内核加速。
- PyTorch:深度学习框架,用于模型的训练和渲染。
- CUDA:NVIDIA 提供的并行计算平台和编程模型,用于加速 GPU 计算。
3. 项目安装和配置的准备工作
在开始安装前,请确保您的系统满足以下要求:
- 操作系统:支持 CUDA 的 Linux 或 Windows 系统。
- GPU:NVIDIA GPU 卡,已安装 CUDA。
- Python:版本 3.9.16。
- Conda:推荐用于环境管理。
- Git:用于克隆项目代码。
安装步骤
-
克隆项目代码
打开命令行,执行以下命令克隆项目:
git clone https://github.com/InternLandMark/LandMark.git
-
设置环境
使用 Conda 创建一个虚拟环境,并激活它:
cd LandMark conda create --name landmark -y python=3.9.16 conda activate landmark
-
安装 PyTorch 和 CUDA
根据系统环境,安装 PyTorch 和 CUDA:
python -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
-
安装依赖
使用项目提供的
requirements.txt
文件安装依赖:pip install -r requirements.txt
-
准备数据集
准备大约 250 到 300 张图像,确保足够的重合区域,并按照以下结构组织数据集:
your_dataset/ ├── images/ │ ├── image_0.png │ ├── image_1.png │ ├── ... ├── transforms_train.json └── transforms_test.json
使用 COLMAP 提取相机位姿和稀疏点云模型,然后使用以下命令转换位姿数据:
python app/tools/colmap2nerf.py --recon_dir data/your_dataset/sparse/0 --output_dir data/your_dataset
-
配置实验
修改
confs/city.txt
文件中的相关参数,如数据集路径、训练和渲染参数等。 -
训练模型
执行以下命令开始训练:
python app/trainer.py --config confs/city.txt
-
渲染图像
训练完成后,使用以下命令进行渲染测试:
python app/renderer.py --config confs/city.txt --ckpt=log/your_expname/your_expname.th
以上步骤为 LandMark 项目的详细安装和配置指南,祝您安装顺利!