《LandMark项目安装与配置指南》

《LandMark项目安装与配置指南》

LandMark LandMark 项目地址: https://gitcode.com/gh_mirrors/la/LandMark

1. 项目基础介绍

LandMark 是一个开源项目,旨在实现大规模真实世界城市场景的三维建模和渲染。该项目基于 GridNeRF(CVPR23)构建,提供了高效的训练和渲染算法,以及对原有算法的优化。LandMark 支持大规模、高质量的视图渲染,并且可以实现场景布局的调整和风格化。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • GridNeRF:用于神经场景渲染的模型,LandMark 在此基础上进行了并行化、算子优化和内核加速。
  • PyTorch:深度学习框架,用于模型的训练和渲染。
  • CUDA:NVIDIA 提供的并行计算平台和编程模型,用于加速 GPU 计算。

3. 项目安装和配置的准备工作

在开始安装前,请确保您的系统满足以下要求:

  • 操作系统:支持 CUDA 的 Linux 或 Windows 系统。
  • GPU:NVIDIA GPU 卡,已安装 CUDA。
  • Python:版本 3.9.16。
  • Conda:推荐用于环境管理。
  • Git:用于克隆项目代码。

安装步骤

  1. 克隆项目代码

    打开命令行,执行以下命令克隆项目:

    git clone https://github.com/InternLandMark/LandMark.git
    
  2. 设置环境

    使用 Conda 创建一个虚拟环境,并激活它:

    cd LandMark
    conda create --name landmark -y python=3.9.16
    conda activate landmark
    
  3. 安装 PyTorch 和 CUDA

    根据系统环境,安装 PyTorch 和 CUDA:

    python -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
    
  4. 安装依赖

    使用项目提供的 requirements.txt 文件安装依赖:

    pip install -r requirements.txt
    
  5. 准备数据集

    准备大约 250 到 300 张图像,确保足够的重合区域,并按照以下结构组织数据集:

    your_dataset/
    ├── images/
    │   ├── image_0.png
    │   ├── image_1.png
    │   ├── ...
    ├── transforms_train.json
    └── transforms_test.json
    

    使用 COLMAP 提取相机位姿和稀疏点云模型,然后使用以下命令转换位姿数据:

    python app/tools/colmap2nerf.py --recon_dir data/your_dataset/sparse/0 --output_dir data/your_dataset
    
  6. 配置实验

    修改 confs/city.txt 文件中的相关参数,如数据集路径、训练和渲染参数等。

  7. 训练模型

    执行以下命令开始训练:

    python app/trainer.py --config confs/city.txt
    
  8. 渲染图像

    训练完成后,使用以下命令进行渲染测试:

    python app/renderer.py --config confs/city.txt --ckpt=log/your_expname/your_expname.th
    

以上步骤为 LandMark 项目的详细安装和配置指南,祝您安装顺利!

LandMark LandMark 项目地址: https://gitcode.com/gh_mirrors/la/LandMark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

包力文Hardy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值