Awesome Community Detection 开源项目教程
1. 项目的目录结构及介绍
Awesome Community Detection 项目的目录结构如下:
awesome-community-detection/
├── algorithms/
│ ├── graph_clustering/
│ ├── link_clustering/
│ ├── overlapping_community_detection/
│ ├── partition_community_detection/
│ └── single_node_community_detection/
├── datasets/
├── evaluation/
├── LICENSE
├── README.md
└── requirements.txt
目录结构介绍
algorithms/
:包含各种社区检测算法的实现。graph_clustering/
:图聚类算法。link_clustering/
:链接聚类算法。overlapping_community_detection/
:重叠社区检测算法。partition_community_detection/
:分区社区检测算法。single_node_community_detection/
:单节点社区检测算法。
datasets/
:包含用于测试和评估的数据集。evaluation/
:包含评估社区检测算法性能的工具和脚本。LICENSE
:项目的许可证文件。README.md
:项目的介绍和使用说明。requirements.txt
:项目依赖的Python包列表。
2. 项目的启动文件介绍
项目的启动文件通常位于各个算法的子目录中。例如,在 algorithms/graph_clustering/
目录下,可能会有一个 main.py
文件作为启动文件。
启动文件示例
# algorithms/graph_clustering/main.py
import argparse
from .algorithm import run_algorithm
def main():
parser = argparse.ArgumentParser(description="Graph Clustering Algorithm")
parser.add_argument("--input", required=True, help="Input graph file")
parser.add_argument("--output", required=True, help="Output community file")
args = parser.parse_args()
run_algorithm(args.input, args.output)
if __name__ == "__main__":
main()
启动文件介绍
main.py
:定义了命令行参数解析和算法运行的主函数。run_algorithm
:具体的算法实现函数,接受输入文件和输出文件路径作为参数。
3. 项目的配置文件介绍
项目的配置文件通常用于设置算法的参数和数据路径。在 algorithms/graph_clustering/
目录下,可能会有一个 config.yaml
文件作为配置文件。
配置文件示例
# algorithms/graph_clustering/config.yaml
input_file: "datasets/example_graph.txt"
output_file: "results/communities.txt"
algorithm_params:
threshold: 0.5
max_iterations: 100
配置文件介绍
input_file
:输入图文件的路径。output_file
:输出社区文件的路径。algorithm_params
:算法的参数设置,如阈值和最大迭代次数。
通过配置文件,用户可以方便地修改算法的输入输出路径和参数,而无需修改代码。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考