GenAI Quick Start PoCs 项目教程
1、项目介绍
GenAI Quick Start PoCs 是一个由 AWS 提供的开源项目,旨在展示如何利用 Amazon Bedrock 和 Generative AI 实现各种用例。每个示例都是一个独立的项目,包含自己的目录,并提供了一个基本的 Streamlit 前端,帮助用户快速设置概念验证(PoC)。
2、项目快速启动
环境准备
在开始之前,请确保您已经安装了以下工具:
- Python 3.8 或更高版本
- Git
- AWS CLI
- Streamlit
克隆项目
首先,克隆项目到本地:
git clone https://github.com/aws-samples/genai-quickstart-pocs.git
cd genai-quickstart-pocs
安装依赖
进入项目目录后,安装所需的 Python 依赖包:
pip install -r requirements.txt
运行示例
选择一个示例项目,例如 Amazon-Bedrock-Summarization-Long-Document-POC
,进入该目录并运行 Streamlit 应用:
cd Amazon-Bedrock-Summarization-Long-Document-POC
streamlit run app.py
3、应用案例和最佳实践
长文档摘要
示例项目: Amazon-Bedrock-Summarization-Long-Document-POC
描述: 该示例展示了如何使用 Amazon Bedrock 和 Generative AI 实现长文档摘要。用户可以上传大型 PDF 文档,文档将被分块并使用 Amazon Bedrock 进行摘要。
最佳实践:
- 确保文档格式正确,避免复杂的布局。
- 调整分块大小以优化摘要效果。
图像生成
示例项目: Amazon-Bedrock-Image-Generation-POC
描述: 该示例展示了如何使用 Amazon Bedrock 和 Generative AI 根据文本输入生成图像。
最佳实践:
- 提供清晰、具体的文本描述以获得更好的图像生成效果。
- 尝试不同的模型以找到最适合的生成结果。
4、典型生态项目
Amazon Bedrock
描述: Amazon Bedrock 是一个完全托管的服务,提供对各种生成式 AI 模型的访问,支持文本生成、图像生成、摘要等多种用例。
Streamlit
描述: Streamlit 是一个开源的 Python 库,用于快速构建和共享数据应用程序。在本项目中,Streamlit 用于创建用户友好的前端界面。
AWS CLI
描述: AWS CLI 是一个命令行工具,允许用户与 AWS 服务进行交互。在本项目中,AWS CLI 用于配置和管理 AWS 资源。
通过以上步骤,您可以快速启动并运行 GenAI Quick Start PoCs 项目,并探索各种生成式 AI 用例。