SE(3) Diffusion 模型项目教程
项目地址:https://gitcode.com/gh_mirrors/se/se3_diffusion
1. 项目介绍
SE(3) Diffusion 模型是一个用于蛋白质骨架生成的实现项目。该项目基于 SE(3) 扩散模型,旨在生成蛋白质的骨架结构。虽然该项目主要针对蛋白质骨架生成,但其原理也可应用于其他使用 SE(3) 的领域。
项目的主要特点包括:
- 基于 SE(3) 扩散模型的蛋白质骨架生成。
- 适用于其他领域的 SE(3) 扩散模型。
- 提供了 SO(3) 扩散的示例笔记本。
- 支持代码库的更新和改进。
2. 项目快速启动
安装依赖
首先,推荐使用 miniconda
或 anaconda
来管理环境。运行以下命令来创建并激活一个包含必要依赖的 conda 环境:
conda env create -f se3.yml
conda activate se3_diffusion
安装项目
接下来,将项目代码安装为可编辑的包:
pip install -e .
运行示例
项目提供了一个推理脚本 inference_se3_diffusion.py
,可以通过以下命令运行:
python experiments/inference_se3_diffusion.py
推理配置文件位于 config/inference.yaml
,可以通过修改 weights_path
来使用自定义的权重文件。
3. 应用案例和最佳实践
蛋白质骨架生成
SE(3) Diffusion 模型主要用于生成蛋白质的骨架结构。通过使用该项目,研究人员可以生成新的蛋白质骨架,并进一步研究其结构和功能。
其他领域的应用
虽然该项目主要针对蛋白质骨架生成,但其 SE(3) 扩散模型的原理也可应用于其他领域,如分子动力学模拟、材料科学等。
最佳实践
- 数据预处理:在使用项目进行训练之前,需要下载并预处理 PDB 数据。可以使用项目提供的脚本来完成这一步骤。
- 模型训练:项目提供了详细的训练配置文件,可以根据需要调整参数进行训练。
- 模型评估:训练完成后,可以使用推理脚本来评估模型的性能,并生成样本进行进一步分析。
4. 典型生态项目
OpenFold
项目中包含了对 OpenFold 的修改版本,用于蛋白质结构的预测和生成。OpenFold 是一个基于深度学习的蛋白质结构预测工具,与 SE(3) Diffusion 模型结合使用,可以进一步提升蛋白质骨架生成的准确性。
ProteinMPNN
ProteinMPNN 是一个用于蛋白质序列设计的工具,项目中使用了 ProteinMPNN 来生成蛋白质序列,并进行自一致性检查。
AlphaFold
项目中还使用了 AlphaFold 的一些文件,主要用于数据处理和模型训练。AlphaFold 是一个著名的蛋白质结构预测工具,其代码和模型在项目中得到了应用。
通过结合这些生态项目,SE(3) Diffusion 模型可以实现更复杂的蛋白质骨架生成任务,并进一步提升模型的性能和应用范围。