SE(3) Diffusion 模型项目教程

SE(3) Diffusion 模型项目教程

项目地址:https://gitcode.com/gh_mirrors/se/se3_diffusion

1. 项目介绍

SE(3) Diffusion 模型是一个用于蛋白质骨架生成的实现项目。该项目基于 SE(3) 扩散模型,旨在生成蛋白质的骨架结构。虽然该项目主要针对蛋白质骨架生成,但其原理也可应用于其他使用 SE(3) 的领域。

项目的主要特点包括:

  • 基于 SE(3) 扩散模型的蛋白质骨架生成。
  • 适用于其他领域的 SE(3) 扩散模型。
  • 提供了 SO(3) 扩散的示例笔记本。
  • 支持代码库的更新和改进。

2. 项目快速启动

安装依赖

首先,推荐使用 minicondaanaconda 来管理环境。运行以下命令来创建并激活一个包含必要依赖的 conda 环境:

conda env create -f se3.yml
conda activate se3_diffusion

安装项目

接下来,将项目代码安装为可编辑的包:

pip install -e .

运行示例

项目提供了一个推理脚本 inference_se3_diffusion.py,可以通过以下命令运行:

python experiments/inference_se3_diffusion.py

推理配置文件位于 config/inference.yaml,可以通过修改 weights_path 来使用自定义的权重文件。

3. 应用案例和最佳实践

蛋白质骨架生成

SE(3) Diffusion 模型主要用于生成蛋白质的骨架结构。通过使用该项目,研究人员可以生成新的蛋白质骨架,并进一步研究其结构和功能。

其他领域的应用

虽然该项目主要针对蛋白质骨架生成,但其 SE(3) 扩散模型的原理也可应用于其他领域,如分子动力学模拟、材料科学等。

最佳实践

  • 数据预处理:在使用项目进行训练之前,需要下载并预处理 PDB 数据。可以使用项目提供的脚本来完成这一步骤。
  • 模型训练:项目提供了详细的训练配置文件,可以根据需要调整参数进行训练。
  • 模型评估:训练完成后,可以使用推理脚本来评估模型的性能,并生成样本进行进一步分析。

4. 典型生态项目

OpenFold

项目中包含了对 OpenFold 的修改版本,用于蛋白质结构的预测和生成。OpenFold 是一个基于深度学习的蛋白质结构预测工具,与 SE(3) Diffusion 模型结合使用,可以进一步提升蛋白质骨架生成的准确性。

ProteinMPNN

ProteinMPNN 是一个用于蛋白质序列设计的工具,项目中使用了 ProteinMPNN 来生成蛋白质序列,并进行自一致性检查。

AlphaFold

项目中还使用了 AlphaFold 的一些文件,主要用于数据处理和模型训练。AlphaFold 是一个著名的蛋白质结构预测工具,其代码和模型在项目中得到了应用。

通过结合这些生态项目,SE(3) Diffusion 模型可以实现更复杂的蛋白质骨架生成任务,并进一步提升模型的性能和应用范围。

se3_diffusion Implementation for SE(3) diffusion model with application to protein backbone generation se3_diffusion 项目地址: https://gitcode.com/gh_mirrors/se/se3_diffusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史跃骏Erika

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值