MobileCLIP 项目使用说明
1. 项目目录结构及介绍
MobileCLIP 项目是一个开源项目,旨在通过多模态强化训练实现快速图像-文本模型。项目的目录结构如下:
docs/
: 存放项目文档。eval/
: 包含评估模型性能的脚本。ios_app/
: 包含构建 iOS 应用的代码。mobileclip/
: 包含模型训练和推理的核心代码。results/
: 存放实验结果。training/
: 包含模型训练的脚本和数据准备代码。.gitignore
: 指定 Git 忽略的文件。ACKNOWLEDGEMENTS
: 记录项目依赖的开源贡献和许可信息。CODE_OF_CONDUCT.md
: 项目的行为准则。CONTRIBUTING.md
: 指导如何为项目做贡献。LICENSE
: 项目使用的许可证。LICENSE_weights_data
: 权重和数据使用的许可证。README.md
: 项目说明文件。get_pretrained_models.sh
: 脚本用于下载预训练模型。hf_dataset_example.py
: 使用 HuggingFace 数据集的示例。requirements.txt
: 项目依赖的 Python 包。setup.py
: 设置项目环境的 Python 脚本。
2. 项目的启动文件介绍
项目的启动主要通过 setup.py
文件进行,该文件用于创建 Python 虚拟环境并安装项目所需的依赖。以下是启动项目的步骤:
conda create -n clipenv python=3.10
conda activate clipenv
pip install -e .
安装完成后,可以通过以下命令下载预训练模型:
source get_pretrained_models.sh
3. 项目的配置文件介绍
项目中的配置主要通过 Python 脚本中的参数设置进行。例如,在模型推理示例中,以下代码片段展示了如何加载模型和执行推理:
import torch
from PIL import Image
import mobileclip
model, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='/path/to/mobileclip_s0.pt')
tokenizer = mobileclip.get_tokenizer('mobileclip_s0')
image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
以上代码展示了如何创建模型、加载预训练权重、处理图像和文本数据,以及执行推理并打印出结果。项目的配置文件和脚本允许用户根据需要调整模型和数据处理流程。