LongMem 项目使用教程

LongMem 项目使用教程

LongMem Official implementation of our NeurIPS 2023 paper "Augmenting Language Models with Long-Term Memory". LongMem 项目地址: https://gitcode.com/gh_mirrors/lo/LongMem

1. 项目介绍

LongMem 是一个用于增强语言模型(LLMs)长期记忆的框架,由 Weizhi Wang 等人在 NeurIPS 2023 上提出。该项目通过设计一种新颖的解耦网络架构,使得语言模型能够记忆长期历史信息。原始的骨干 LLM 被冻结为记忆编码器,而自适应残差侧网络则作为记忆检索器和阅读器。这种解耦的记忆设计可以轻松缓存和更新长期过去的上下文,而不会受到记忆陈旧的影响。通过记忆增强的适应性训练,LongMem 能够记忆和利用丰富的长期上下文信息。

2. 项目快速启动

环境设置

首先,确保你已经安装了以下依赖:

  • torch: 建议使用 torch>=1.8.0。请根据你的 CUDA 驱动版本选择合适的 GPU 版本。
  • Faiss-GPU: 对于 Nvidia V100 GPU,可以通过 pip install faiss-gpu 安装。对于 Nvidia A100 或 A6000 GPU,请运行 conda install faiss-gpu cudatoolkit=11.0 -c pytorch
  • fairseq: 通过以下命令安装:
    pip install --editable /path/to/fairseq
    
  • 其他依赖:
    pip install -r requirements.txt
    

项目结构

  • Pre-trained LLM Class: fairseq/fairseq/models/newgpt.py
  • Transformer Decoder with SideNetwork: fairseq/fairseq/models/sidenet/transformer_decoder_sidenet.py
  • Transformer Language Model with SideNetwork Class: fairseq/fairseq/models/transformer_lm_sidenet.py
  • Memory Bank and Retrieval: fairseq/fairseq/modules/dynamic_memory_with_chunk.py
  • Joint Attention for Memory Fusion: fairseq/fairseq/modules/joint_multihead_attention_sum.py

数据预处理

下载 Pile 数据集,并按照以下步骤进行预处理:

python preprocess/filter_shard_tnlg.py

训练

运行以下命令进行训练:

bash train_scripts/train_longmem.sh

评估

下载预训练的 GPT2-medium 模型和 LongMem 模型的检查点,然后运行以下命令进行评估:

# 评估 GPT2 基线模型
python eval_scripts/eval_longmem_icl.py --path /path/to/gpt2_pretrained_model

# 评估 LongMem 模型
python eval_scripts/eval_longmem_icl.py --path /path/to/longmem_model --pretrained-model-path /path/to/gpt2_pretrained_model

3. 应用案例和最佳实践

LongMem 可以应用于需要长期记忆的场景,例如:

  • 对话系统: 增强对话系统对用户历史对话的记忆能力,提升对话的连贯性和用户体验。
  • 文档摘要: 在处理长文档时,LongMem 可以帮助模型更好地理解和总结文档内容。
  • 知识问答: 通过记忆和检索长期知识,提升问答系统的准确性和覆盖范围。

4. 典型生态项目

  • fairseq: LongMem 基于 fairseq 框架开发,fairseq 是一个用于序列到序列任务的强大工具包。
  • Pile 数据集: 用于训练和评估 LongMem 的数据集,提供了丰富的文本数据。
  • Faiss: 用于高效的向量检索,支持 LongMem 的记忆检索功能。

LongMem Official implementation of our NeurIPS 2023 paper "Augmenting Language Models with Long-Term Memory". LongMem 项目地址: https://gitcode.com/gh_mirrors/lo/LongMem

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顾涓轶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值