Tabula-Py 使用教程
项目地址:https://gitcode.com/gh_mirrors/ta/tabula-py
项目介绍
Tabula-Py 是一个Python库,它作为Java程序 tabula-java 的简单封装器。该库的主要功能是从PDF文件中提取表格数据并转换成Pandas DataFrame,方便进一步的数据处理和分析。Tabula-Py支持多个操作系统,如macOS和Ubuntu,并且被证实也能在Windows 10上工作。
项目快速启动
安装
确保你的系统已经安装了Java 8或更高版本。然后,通过pip来安装tabula-py:
pip install tabula-py
若希望利用jpype实现更快的执行速度,可以添加额外的依赖:
pip install tabula-py[jpype]
基本用法
下面是一个简单的例子,展示了如何使用tabula.read_pdf
函数从PDF中读取表格:
import tabula
# 读取PDF中的所有表格
dfs = tabula.read_pdf("example.pdf", pages="all")
# 现在,dfs是一个DataFrame列表,每个表格对应一个DataFrame
for df in dfs:
print(df)
应用案例和最佳实践
-
多页表格处理: 若要从PDF中的特定页面提取表格,可以指定
pages
参数,例如pages=2
或pages=[2, 4, 6]
。 -
自定义分隔符: 如果表格是以其他非逗号分隔的方式存储,可以通过设置
pandas_options={"sep": "\t"}
将分隔符更改为制表符。 -
精度控制: 使用
guess_columns
选项进行列宽自动检测,或者手动设置column_widths
以提高识别准确性。 -
模板模式: 对于结构一致的PDF,可以创建一个模板文件并用
read_pdf_with_template
来批量处理类似PDF。
典型生态项目
- Pandas: Tabula-Py与Pandas紧密集成,使得处理PDF表格后的数据可以直接与其他Pandas操作无缝衔接。
- Jupyter Notebook: 在Jupyter环境中使用Tabula-Py,方便进行交互式数据分析和可视化。
- OpenRefine: 可以结合OpenRefine预处理PDF文件,然后用Tabula-Py导入到Python环境处理。
以上是Tabula-Py的基本使用指南,更多详情和高级功能,建议参考官方文档和示例笔记本。祝你在处理PDF表格数据时一切顺利!