Stable-Diffusion-ONNX-FP16 项目教程
1. 项目的目录结构及介绍
Stable-Diffusion-ONNX-FP16/
├── conv_sd_to_onnx.py
├── model/
├── README.md
├── requirements.txt
├── run-batch.md
├── run-batch.py
├── test-controlnet-canny.py
├── test-controlnet-openpose.py
├── test-txt2img.py
├── v1-inference.yaml
└── v1-inpainting-inference.yaml
conv_sd_to_onnx.py
: 用于将Stable Diffusion模型转换为ONNX格式的脚本。model/
: 存储转换后的ONNX模型文件。README.md
: 项目说明文档。requirements.txt
: 项目依赖文件。run-batch.md
: 批处理运行说明文档。run-batch.py
: 批处理运行脚本。test-controlnet-canny.py
: 测试ControlNet Canny模型的脚本。test-controlnet-openpose.py
: 测试ControlNet OpenPose模型的脚本。test-txt2img.py
: 测试文本到图像生成功能的脚本。v1-inference.yaml
: 推理配置文件。v1-inpainting-inference.yaml
: 修复推理配置文件。
2. 项目的启动文件介绍
conv_sd_to_onnx.py
该脚本用于将Stable Diffusion模型转换为ONNX格式。使用方法如下:
python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1-base" --output_path "model/sd2_1base-fp32"
python conv_sd_to_onnx.py --model_path "stabilityai/stable-diffusion-2-1-base" --output_path "model/sd2_1base-fp16" --fp16
test-txt2img.py
该脚本用于测试文本到图像生成功能。使用方法如下:
python test-txt2img.py --model "model/sd2_1base-fp32" --size 512 --seed 0
python test-txt2img.py --model "model/sd2_1base-fp16" --size 512 --seed 0
3. 项目的配置文件介绍
v1-inference.yaml
该配置文件用于推理过程的设置,包括模型路径、输入输出配置等。
v1-inpainting-inference.yaml
该配置文件用于修复推理过程的设置,包括模型路径、输入输出配置等。
以上是Stable-Diffusion-ONNX-FP16项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考