XGBoostLSS安装与配置指南

XGBoostLSS安装与配置指南

XGBoostLSS An extension of XGBoost to probabilistic modelling XGBoostLSS 项目地址: https://gitcode.com/gh_mirrors/xg/XGBoostLSS

1. 项目基础介绍

XGBoostLSS 是一个开源项目,它基于 XGBoost 扩展了概率建模的功能。该项目允许用户通过协变量预测单变量和多变量的完整条件分布,提供了丰富的连续、离散以及混合分布选择,从而增强了 XGBoost 的灵活性,并允许从中导出预测区间和感兴趣的量化值。

主要编程语言:Python

2. 关键技术和框架

  • XGBoost: 一个优化的分布式梯度增强库,用于构建强大的预测模型。
  • PyTorch: 一个流行的深度学习框架,用于自动微分。
  • Pyro: 一个基于 PyTorch 的概率编程库,提供了灵活的概率模型工具。
  • Optuna: 一个自动化超参数优化框架,用于寻找最佳模型参数。
  • SHapley Additive exPlanations (SHAP): 一个解释机器学习模型预测的框架。

3. 安装和配置准备工作

在开始安装 XGBoostLSS 之前,请确保您的环境中已安装以下依赖项:

  • Python (建议版本 3.6 或更高)
  • pip (Python 包管理器)
  • Git (版本控制系统)

详细安装步骤

  1. 克隆项目仓库到本地环境:

    git clone https://github.com/StatMixedML/XGBoostLSS.git
    cd XGBoostLSS
    
  2. 安装项目依赖项:

    在项目根目录下,运行以下命令安装 requirements.txt 文件中列出的依赖项:

    pip install -r requirements.txt
    
  3. 安装 XGBoostLSS:

    您可以选择安装开发版本的 XGBoostLSS,或者安装 PyPI 上的最新版本。

    • 安装开发版本:

      pip install git+https://github.com/StatMixedML/XGBoostLSS.git
      
    • 安装 PyPI 版本:

      pip install xgboostlss
      
  4. 验证安装:

    在 Python 中导入 XGBoostLSS 并运行简单示例,确保安装成功。

    import xgboost as xgb
    from xgboostlss import LSSModel
    
    # 创建模型示例
    model = LSSModel()
    

如果以上步骤没有报错,则表示 XGBoostLSS 已成功安装并配置完毕。您可以开始使用它进行概率建模了。

XGBoostLSS An extension of XGBoost to probabilistic modelling XGBoostLSS 项目地址: https://gitcode.com/gh_mirrors/xg/XGBoostLSS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伏葵飚Anastasia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值