开源项目 semantic-embeddings
使用教程
1. 项目的目录结构及介绍
semantic-embeddings/
├── data/
│ ├── README.md
│ └── ...
├── models/
│ ├── README.md
│ └── ...
├── scripts/
│ ├── README.md
│ └── ...
├── config/
│ ├── config.yaml
│ └── ...
├── src/
│ ├── __init__.py
│ ├── main.py
│ └── ...
├── tests/
│ ├── README.md
│ └── ...
├── README.md
├── requirements.txt
└── setup.py
- data/: 存放项目所需的数据文件。
- models/: 存放训练好的模型文件。
- scripts/: 存放项目的脚本文件,用于数据处理、模型训练等。
- config/: 存放项目的配置文件,如
config.yaml
。 - src/: 项目的源代码目录,包含主要的Python文件,如
main.py
。 - tests/: 存放项目的测试文件。
- README.md: 项目的说明文档。
- requirements.txt: 项目所需的Python依赖包列表。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
项目的启动文件位于 src/main.py
。该文件是整个项目的入口,负责初始化配置、加载数据、启动模型训练或推理等任务。
# src/main.py
import argparse
from config import load_config
from models import load_model
from data import load_data
def main():
parser = argparse.ArgumentParser(description="Semantic Embeddings Project")
parser.add_argument('--config', type=str, default='config/config.yaml', help='Path to the config file')
args = parser.parse_args()
config = load_config(args.config)
model = load_model(config)
data = load_data(config)
# 启动模型训练或推理
model.train(data)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件位于 config/config.yaml
。该文件包含了项目运行所需的各种配置参数,如数据路径、模型参数、训练参数等。
# config/config.yaml
data:
path: "data/dataset.csv"
batch_size: 32
model:
name: "bert"
hidden_size: 768
num_layers: 12
training:
epochs: 10
learning_rate: 0.001
- data: 配置数据路径和批处理大小。
- model: 配置模型的名称、隐藏层大小和层数。
- training: 配置训练的轮数和学习率。
通过修改 config.yaml
文件,可以灵活调整项目的运行参数,以适应不同的需求。