CNN-LSTM 项目使用教程

CNN-LSTM 项目使用教程

cnn-lstmCNN LSTM architecture implemented in Pytorch for Video Classification项目地址:https://gitcode.com/gh_mirrors/cn/cnn-lstm

1. 项目的目录结构及介绍

cnn-lstm/
├── data/
│   ├── processed/
│   └── raw/
├── models/
├── notebooks/
├── src/
│   ├── data/
│   ├── models/
│   └── utils/
├── .gitignore
├── README.md
├── requirements.txt
├── setup.py
└── train.py
  • data/: 存放数据文件,包括原始数据(raw)和处理后的数据(processed)。
  • models/: 存放训练好的模型文件。
  • notebooks/: 存放Jupyter Notebook文件,用于数据分析和模型测试。
  • src/: 源代码目录,包含数据处理(data)、模型构建(models)和工具函数(utils)。
  • .gitignore: Git忽略文件配置。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。
  • setup.py: 项目安装脚本。
  • train.py: 项目启动文件,用于训练模型。

2. 项目的启动文件介绍

train.py

train.py 是项目的启动文件,主要用于训练CNN-LSTM模型。以下是该文件的主要功能和结构:

import os
import argparse
from src.data.make_dataset import load_data
from src.models.train_model import train_model

def main(config):
    # 加载数据
    data = load_data(config['data_path'])
    
    # 训练模型
    model = train_model(data, config)
    
    # 保存模型
    model.save(config['model_path'])

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train CNN-LSTM model")
    parser.add_argument('--data_path', type=str, default='data/processed', help='Path to processed data')
    parser.add_argument('--model_path', type=str, default='models', help='Path to save model')
    parser.add_argument('--epochs', type=int, default=10, help='Number of epochs')
    parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
    
    args = parser.parse_args()
    config = vars(args)
    
    main(config)
  • 加载数据: 使用 load_data 函数从指定路径加载处理后的数据。
  • 训练模型: 使用 train_model 函数训练模型,并传入配置参数。
  • 保存模型: 将训练好的模型保存到指定路径。

3. 项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了项目运行所需的依赖包及其版本。以下是一个示例:

numpy==1.19.2
pandas==1.1.3
tensorflow==2.3.1
scikit-learn==0.23.2
matplotlib==3.3.2

setup.py

setup.py 文件用于项目的安装和打包。以下是一个示例:

from setuptools import setup, find_packages

setup(
    name='cnn-lstm',
    version='0.1.0',
    description='CNN-LSTM model for sequence classification',
    author='Pranoy Radhakrishnan',
    author_email='pranoyr@example.com',
    url='https://github.com/pranoyr/cnn-lstm',
    packages=find_packages(),
    install_requires=[
        'numpy==1.19.2',
        'pandas==1.1.3',
        'tensorflow==2.3.1',
        'scikit-learn==0.23.2',
        'matplotlib==3.3.2'
    ],
    classifiers=[
        'Development Status :: 3 - Alpha',
        'Intended Audience :: Developers',
        'License :: OSI Approved :: MIT License',
        'Programming Language :: Python :: 3.7',
    ],
)
  • name: 项目名称。
  • version: 项目版本。
  • description: 项目描述。

cnn-lstmCNN LSTM architecture implemented in Pytorch for Video Classification项目地址:https://gitcode.com/gh_mirrors/cn/cnn-lstm

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喻建涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值