Vision Transformers for CIFAR-10 使用教程

Vision Transformers for CIFAR-10 使用教程

vision-transformers-cifar10Let's train vision transformers (ViT) for cifar 10! 项目地址:https://gitcode.com/gh_mirrors/vi/vision-transformers-cifar10

项目介绍

vision-transformers-cifar10 是一个用于在 CIFAR-10 数据集上训练 Vision Transformers(ViT)及其相关模型的开源项目。该项目使用 PyTorch 实现,便于用户进行调整和实验。项目包含了多种模型的实现,如 ConvMixer、CaiT、ViT-small、SwinTransformers 和 MLP mixer,并针对 CIFAR-10 数据集调整了默认的训练设置。

项目快速启动

安装依赖

首先,克隆项目仓库并安装所需的依赖包:

git clone https://github.com/kentaroy47/vision-transformers-cifar10.git
cd vision-transformers-cifar10
pip install -r requirements.txt

训练模型

使用 train_cifar10.py 脚本进行模型训练。以下是一些示例命令:

# 训练 ViT 模型,默认 patch size 为 4
python train_cifar10.py

# 训练 ViT 模型,patch size 为 4,图像大小为 48
python train_cifar10.py --size 48

# 训练 ViT 模型,patch size 为 2
python train_cifar10.py --patch 2

应用案例和最佳实践

应用案例

  1. 图像分类:使用 ViT 模型在 CIFAR-10 数据集上进行图像分类,可以获得较高的准确率。
  2. 模型比较:通过训练不同的模型(如 ConvMixer、CaiT、SwinTransformers 等),比较它们在 CIFAR-10 数据集上的性能。

最佳实践

  1. 参数调整:根据具体需求调整模型的参数,如 patch size、图像大小等,以获得最佳性能。
  2. 数据增强:使用数据增强技术(如随机裁剪、随机翻转等)提高模型的泛化能力。
  3. 模型融合:将多个模型的预测结果进行融合,以提高分类的准确性。

典型生态项目

  1. PyTorch:该项目基于 PyTorch 实现,PyTorch 是一个广泛使用的深度学习框架,提供了丰富的工具和库。
  2. CIFAR-10 数据集:CIFAR-10 是一个常用的计算机视觉基准数据集,包含 60000 张 32x32 的彩色图像,分为 10 个类别。
  3. WandB:项目支持使用 WandB 进行训练日志记录,WandB 是一个用于跟踪和可视化机器学习实验的工具。

通过以上内容,您可以快速了解并使用 vision-transformers-cifar10 项目进行模型训练和实验。希望本教程对您有所帮助!

vision-transformers-cifar10Let's train vision transformers (ViT) for cifar 10! 项目地址:https://gitcode.com/gh_mirrors/vi/vision-transformers-cifar10

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
下面是一个基于PyTorch实现的Transformerscifar-10图像分类的代码,使用了BERT作为Transformers的模型。 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from transformers import BertModel # 超参数设置 input_size = 32 hidden_size = 768 num_classes = 10 batch_size = 100 num_epochs = 10 learning_rate = 0.001 # CIFAR-10数据集下载和预处理 transform = transforms.Compose( [transforms.Resize((input_size, input_size)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # BERT模型定义 class BERT(nn.Module): def __init__(self, hidden_size, num_classes): super(BERT, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): # 前向传播 BERT out = self.bert(x)[0][:, 0, :] out = self.fc(out) return out device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = BERT(hidden_size, num_classes).to(device) # 损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 模型训练 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将图像转换成BERT需要的形状 images = images.reshape(-1, input_size * input_size * 3).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 模型测试 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: # 将图像转换成BERT需要的形状 images = images.reshape(-1, input_size * input_size * 3).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) ``` 需要注意的是,这个代码中使用了一个将图像转换成BERT需要的形状的过程,即将每个图像的像素展平成一维向量。在这个例子中,我们使用了预训练的BERT模型来提取图像的特征,并将特征向量输入到一个全连接层中进行分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班民航Small

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值