logits-processor-zoo:轻松控制LLM输出,实现任务导向生成

logits-processor-zoo:轻松控制LLM输出,实现任务导向生成

logits-processor-zoo A collection of LogitsProcessors to customize and enhance LLM behavior for specific tasks. logits-processor-zoo 项目地址: https://gitcode.com/gh_mirrors/lo/logits-processor-zoo

项目介绍

logits-processor-zoo 是一个开源项目,旨在帮助开发者更好地控制和调整大型语言模型(LLM)的输出结果,使其更符合特定的任务要求。该项目包含了一系列工具,使得LLM在执行特定任务时,不仅仅局限于语法校验,而是能够生成更加精准、符合用户需求的文本。

项目技术分析

logits-processor-zoo 基于多个深度学习框架,包括 transformersvLLM 以及 TensorRT-LLM。这些框架为项目提供了强大的基础支持,使得项目能够兼容多种LLM模型,并对其进行定制化的处理。

项目通过调整模型生成的logits来影响输出,引入了多种LogitsProcessor,这些处理器可以修改LLM的生成行为。例如,GenLengthLogitsProcessor可以基于生成的序列长度调整结束符的概率,CiteFromPromptLogitsProcessor则可以增加或减少与提示符中出现的token的概率,以引导模型生成更接近提示符的文本。

项目及技术应用场景

应用场景

  • 生成指定长度的文本:使用GenLengthLogitsProcessor,可以根据需求生成更短或更长的文本。
  • 引用提示符内容:通过CiteFromPromptLogitsProcessor,模型可以更倾向于生成与提示符相似的内容。
  • 固定结束短语ForceLastPhraseLogitsProcessor允许在文本末尾添加特定的短语,如引用或致谢。
  • 回答多选问题MultipleChoiceLogitsProcessor可以帮助模型生成特定选项作为答案。
  • 触发特定短语TriggerPhraseLogitsProcessor可以在模型遇到特定token时触发特定短语,如编写代码。

技术应用

logits-processor-zoo 可以广泛应用于多种场景,包括但不限于:

  • 自动问答系统
  • 文本摘要生成
  • 代码辅助编写
  • 对话系统

项目特点

  1. 兼容性:项目支持多种主流深度学习框架,提供了广泛的模型兼容性。
  2. 灵活性:通过自定义LogitsProcessor,开发者可以根据具体需求灵活调整LLM的输出。
  3. 高效性logits-processor-zoo 的设计确保了在生成文本时的高效性,有助于提升模型在特定任务上的性能。
  4. 易于使用:项目提供了简洁的API和详细的示例,使得开发者能够快速上手并应用于实际项目。

安装

pip install logits-processor-zoo

使用示例

import vllm
from logits_processor_zoo.vllm import GenLengthLogitsProcessor, CiteFromPromptLogitsProcessor, ForceLastPhraseLogitsProcessor

# 初始化模型和分词器
model = vllm.LLM(model_name, trust_remote_code=True, dtype="half", enforce_eager=True)
tokenizer = model.get_tokenizer()

# 定义logits处理器
logits_processors = [
    CiteFromPromptLogitsProcessor(tokenizer, boost_factor=2.0),
    GenLengthLogitsProcessor(tokenizer, boost_factor=-0.2, p=1),
    ForceLastPhraseLogitsProcessor("\n\nReferences:\n", tokenizer)
]

# 生成文本
gen_output = model.generate(
    prompts,
    vllm.SamplingParams(
        n=1,
        temperature=0,
        seed=0,
        skip_special_tokens=True,
        max_tokens=64,
        logits_processors=logits_processors
    ),
    use_tqdm=False
)

通过logits-processor-zoo,开发者可以更轻松地实现LLM在特定任务上的精确控制,提升模型的实际应用效果。如果您正在寻找一种更有效的LLM输出调整工具,logits-processor-zoo 将是您的理想选择。

logits-processor-zoo A collection of LogitsProcessors to customize and enhance LLM behavior for specific tasks. logits-processor-zoo 项目地址: https://gitcode.com/gh_mirrors/lo/logits-processor-zoo

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐皓锟Godly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值