Apache Aurora 使用教程

Apache Aurora 使用教程

auroraApache Aurora - A Mesos framework for long-running services, cron jobs, and ad-hoc jobs项目地址:https://gitcode.com/gh_mirrors/aurora56/aurora

项目介绍

Apache Aurora 是一个用于长期运行服务、cron 作业和 ad-hoc 作业的 Mesos 框架。它提供了强大的调度功能、资源管理和作业监控。Aurora 旨在简化 Mesos 上的服务部署和管理,支持高可用性和可扩展性。

项目快速启动

环境准备

在开始之前,确保你已经安装了以下软件:

  • Mesos
  • Aurora
  • Java
  • Python

安装 Aurora

  1. 克隆项目仓库:

    git clone https://github.com/apache/aurora.git
    cd aurora
    
  2. 构建 Aurora:

    ./gradlew build
    
  3. 启动 Aurora Scheduler:

    ./dist/bin/aurora-scheduler -mesos_master_address=localhost:5050
    

部署示例任务

  1. 创建一个简单的任务定义文件 hello_world.aurora

    hello_world_job = Job(
        name='hello_world',
        role='www-data',
        environment='prod',
        cluster='devcluster',
        task=Task(
            name='hello_world_task',
            processes=[Process(name='hello_world', cmdline='echo Hello World')],
            resources=Resources(cpu=1, ram=128*MB, disk=128*MB)
        )
    )
    
    jobs = [hello_world_job]
    
  2. 使用 Aurora CLI 提交任务:

    ./dist/bin/aurora job create devcluster/www-data/prod/hello_world hello_world.aurora
    

应用案例和最佳实践

应用案例

Apache Aurora 广泛应用于需要高可用性和可扩展性的服务部署,例如:

  • Web 服务
  • 数据处理任务
  • Cron 作业

最佳实践

  • 资源管理:合理分配 CPU、内存和磁盘资源,避免资源浪费。
  • 监控和日志:使用 Aurora 提供的监控和日志功能,确保服务的稳定运行。
  • 自动化部署:利用 CI/CD 工具自动化部署流程,提高效率。

典型生态项目

Mesos

Mesos 是 Apache Aurora 的基础,提供了资源管理和任务调度的核心功能。

Aurora CLI

Aurora CLI 是 Aurora 的命令行工具,用于管理和监控任务。

Thermos

Thermos 是 Aurora 的任务执行器,负责在 Mesos 上运行和管理任务。

通过以上内容,你可以快速了解和使用 Apache Aurora,并根据实际需求进行扩展和优化。

auroraApache Aurora - A Mesos framework for long-running services, cron jobs, and ad-hoc jobs项目地址:https://gitcode.com/gh_mirrors/aurora56/aurora

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤迅兰Livia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值