deepAI 项目使用教程
1. 项目的目录结构及介绍
deepAI/
├── data/
│ └── (数据文件)
├── images/
│ └── (图像文件)
├── models/
│ └── (模型文件)
├── .gitignore
├── GTC_2018_CoLab.ipynb
├── GTC_2018_Lab-solutions.ipynb
├── GTC_2018_Lab.ipynb
├── LICENSE
├── README.md
└── requirements.txt
目录结构说明
- data/: 存放项目所需的数据文件。
- images/: 存放项目中使用的图像文件。
- models/: 存放训练好的模型文件。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
- GTC_2018_CoLab.ipynb: 项目的主要 Jupyter Notebook 文件,包含实验代码和说明。
- GTC_2018_Lab-solutions.ipynb: 包含实验的解决方案。
- GTC_2018_Lab.ipynb: 实验的初始 Notebook 文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的说明文档。
- requirements.txt: 项目所需的 Python 依赖包列表。
2. 项目的启动文件介绍
GTC_2018_CoLab.ipynb
这是项目的主要启动文件,包含了实验的代码和详细的说明。通过运行这个 Jupyter Notebook,用户可以逐步了解如何使用深度自编码器神经网络检测会计异常。
启动步骤
-
安装必要的依赖包:
pip install -r requirements.txt
-
启动 Jupyter Notebook:
jupyter notebook
-
在 Jupyter Notebook 界面中打开
GTC_2018_CoLab.ipynb
文件,按照说明逐步运行代码。
3. 项目的配置文件介绍
requirements.txt
这个文件列出了项目运行所需的 Python 依赖包及其版本。用户可以通过以下命令安装这些依赖包:
pip install -r requirements.txt
配置文件内容示例
torch==1.7.1
numpy==1.19.2
pandas==1.1.3
matplotlib==3.3.2
配置说明
- torch: 用于深度学习的 PyTorch 库。
- numpy: 用于数值计算的库。
- pandas: 用于数据处理的库。
- matplotlib: 用于数据可视化的库。
通过安装这些依赖包,用户可以确保项目在本地环境中正常运行。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考