ZML项目使用教程

ZML项目使用教程

zml Any model. Any hardware. Zero compromise. Built with @ziglang / @openxla / MLIR / @bazelbuild zml 项目地址: https://gitcode.com/gh_mirrors/zm/zml

1. 项目介绍

ZML是一个基于Zig语言、MLIR和bazel构建的高性能AI推理栈,旨在帮助开发者构建激动人心的AI产品。ZML利用了Zig语言的强大性能,结合MLIR和bazel的灵活构建系统,使得在多种硬件上部署AI模型变得简单高效。

2. 项目快速启动

环境准备

首先,确保您的系统中安装了bazel。推荐使用bazelisk,这是一个bazel的版本管理工具。您可以根据以下命令进行安装:

  • macOS:

    brew install bazelisk
    
  • Linux:

    curl -L -o /usr/local/bin/bazel 'https://github.com/bazelbuild/bazelisk/releases/download/v1.25.0/bazelisk-linux-amd64'
    chmod +x /usr/local/bin/bazel
    

运行示例模型

ZML项目中包含了一些示例模型,您可以在examples目录下找到它们。以下是如何运行MNIST手写数字识别模型的步骤:

  1. 进入examples目录:

    cd examples
    
  2. 使用bazel运行模型:

    bazel run -c opt //mnist
    

或者,如果您不想全局安装bazel,可以使用以下命令:

./bazel.sh run -c opt //mnist

3. 应用案例和最佳实践

以下是使用ZML的一些应用案例和最佳实践:

  • MNIST模型:这是一个经典的案例,用于识别手写数字。您可以参考examples/mnist目录下的代码,了解如何加载和运行一个预训练的MNIST模型。

  • LLaMA模型:这是一个大型语言模型,您需要从HuggingFace获取相应的权限才能使用。一旦获得权限,您可以通过bazel运行LLaMA模型,并尝试不同的提示(prompts)。

  • 跨硬件部署:ZML支持在多种硬件上编译和运行模型,包括NVIDIA GPU、AMD RoCM、Google TPU等。您可以通过为bazel命令添加相应的参数来实现。

4. 典型生态项目

ZML项目作为AI推理的一部分,可以与以下典型生态项目结合使用:

  • Zig:ZML使用Zig语言进行开发,这是一种注重性能的编程语言,非常适合系统级编程。

  • MLIR:一个统一的中间表示框架,用于各种机器学习编译器和执行引擎。

  • Bazel:一个开源构建和测试框架,用于高效地构建大型项目和代码库。

通过结合这些项目,ZML能够提供一种强大的解决方案,用于在多种硬件平台上部署和优化AI模型。

以上就是ZML项目的使用教程,希望对您的开发工作有所帮助。

zml Any model. Any hardware. Zero compromise. Built with @ziglang / @openxla / MLIR / @bazelbuild zml 项目地址: https://gitcode.com/gh_mirrors/zm/zml

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑微殉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值