WhisperSpeech开源语音合成系统技术解析

WhisperSpeech开源语音合成系统技术解析

WhisperSpeech An Open Source text-to-speech system built by inverting Whisper. WhisperSpeech 项目地址: https://gitcode.com/gh_mirrors/wh/WhisperSpeech

项目概述

WhisperSpeech是一个基于Whisper模型逆向工程构建的开源文本转语音(TTS)系统,前身为spear-tts-pytorch项目。该项目旨在打造一个类似Stable Diffusion但在语音领域的强大且易于定制的系统。

核心特点

  1. 完全开源:所有代码和模型均采用开源许可,可安全用于商业应用
  2. 多语言支持:当前主要支持英语和波兰语,未来将扩展至更多语言
  3. 高质量语音合成:通过整合多个先进模型实现高质量的语音输出
  4. 语音克隆能力:支持基于参考音频的语音风格克隆

技术架构解析

1. 语义标记生成层

项目创新性地使用了Whisper编码器块来生成语音的语义嵌入:

  • 将音频输入Whisper编码器获得连续表示
  • 通过量化处理转换为离散的语义标记
  • 优势:无需文本转录即可处理Whisper支持的任何语言

语义标记生成流程

2. 声学建模层

采用Meta的EnCodec进行声学建模:

  • 默认提供1.5kbps的合理质量语音
  • 通过Vocos声码器可提升至高质量输出
  • 支持高效的音频表示和重构

3. 性能优化

项目团队近期进行了多项性能优化:

  • 集成torch.compile加速计算
  • 添加kv缓存机制
  • 层结构调优
  • 效果:在RTX 4090上实现超过12倍实时速度

多语言混合能力

WhisperSpeech展示了一项独特能力:可在单句内无缝混合多种语言。例如:

"To jest pierwszy test wielojęzycznego Whisper Speech modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze Jewels."

这种能力为多语言应用场景提供了新的可能性。

语音克隆功能

系统支持基于参考音频的语音克隆,例如:

  • 从丘吉尔著名演讲音频克隆其声音特征
  • 保留原始录音的独特音质特点(如电台静电声)
  • 可应用于个性化语音合成场景

技术演进路线

近期进展

  • 2024-01-29:成功训练支持法语的小型S2A模型
  • 2024-01-18:重大性能优化,实现多语言混合
  • 2024-01-10:新增语音克隆功能
  • 2023-12-10:扩展英语和波兰语支持

未来规划

  • 收集更大规模的情感语音数据集
  • 开发情感和韵律控制生成功能
  • 建立多语言自由授权语音社区
  • 训练最终的多语言模型

应用前景

WhisperSpeech作为开源语音合成解决方案,在以下领域具有广阔应用前景:

  • 无障碍技术:为视障人士提供高质量语音
  • 教育领域:多语言学习辅助工具
  • 内容创作:播客、有声书制作
  • 游戏开发:NPC语音生成
  • 智能助手:个性化语音交互

技术基础

项目建立在多个优秀开源项目基础上:

  1. Whisper:来自OpenAI的语音识别模型
  2. EnCodec:Meta的高保真神经音频编解码器
  3. Vocos:Charactr Inc的高质量声码器

这种技术整合避免了"非我发明"(NIH)综合征,充分利用了现有最佳解决方案。

总结

WhisperSpeech代表了开源语音合成技术的最新进展,通过创新的架构设计和性能优化,在质量、速度和功能多样性方面都取得了显著成果。随着多语言支持和语音克隆等功能的不断完善,该项目有望成为开源语音合成领域的重要标杆。

WhisperSpeech An Open Source text-to-speech system built by inverting Whisper. WhisperSpeech 项目地址: https://gitcode.com/gh_mirrors/wh/WhisperSpeech

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奚子萍Marcia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值