f-AnoGAN 开源项目教程

f-AnoGAN 开源项目教程

f-AnoGAN项目地址:https://gitcode.com/gh_mirrors/fan/f-AnoGAN

1. 项目介绍

f-AnoGAN 是一个基于生成对抗网络(GAN)的异常检测工具。该项目的特点在于它采用分离训练的方式,分别训练两个对抗网络(生成器和判别器)以及编码器。通过判别器特征残差误差和图像重建误差来计算异常分数。此外,该项目支持日语版本,并提供了参考文献和实现代码。

2. 项目快速启动

在你的机器上安装必要的依赖并开始训练模型:

首先,确保拥有Python 3.6或更高版本以及以下库:

  • PyTorch 1.x
  • Matplotlib
  • Numpy
  • Pandas
  • Pillow
  • scikit-learn

安装依赖

python setup.py install

接下来,切换到MNIST示例目录并依次运行以下命令进行训练和测试:

cd mnist

训练Wasserstein GAN with Gradient Penalty

python train_wgangp.py --training_label 1 --seed 2 --n_epochs 20

训练Encoder (Izifa)

python train_encoder_izif.py --training_label 1 --seed 2 --n_epochs 20

测试异常检测

python test_anomaly_detection.py --training_label 1

分析自定义数据集

your_own_dataset_dir_name/test_dir_name替换为你的测试数据相对路径:

python test_anomaly_detection.py "your_own_dataset_dir_name/test_dir_name"

保存比较图片

同样地,将路径替换为测试数据相对路径:

python save_compared_images.py "your_own_dataset_dir_name/test_dir_name" --n_iters 0 --n_grid_lines 10

3. 应用案例和最佳实践

  • MNIST 示例展示了如何对数字图像进行异常检测,这可以应用于识别手写数字中的异常。
  • MVTec AD 数据集可以用于工业对象检测,帮助识别产品生产线上可能出现的问题。
  • 最佳实践包括使用GPU加速训练过程,以及调整超参数以优化不同数据集的表现。

4. 典型生态项目

以上就是关于f-AnoGAN的基本介绍,快速启动指南,以及相关生态项目的概述。开始探索并利用这个强大的工具进行异常检测吧!

f-AnoGAN项目地址:https://gitcode.com/gh_mirrors/fan/f-AnoGAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈冉茉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值