AudioMAE 开源项目安装与使用指南

AudioMAE 开源项目安装与使用指南

AudioMAE This repo hosts the code and models of "Masked Autoencoders that Listen". AudioMAE 项目地址: https://gitcode.com/gh_mirrors/au/AudioMAE

1. 项目目录结构及介绍

AudioMAE 是 Facebook Research 推出的一个音频处理项目,专注于通过 Masked Autoencoder 技术进行音频特征学习。下面是该仓库的主要目录结构和相关文件简介:

.
├── assets             # 资源文件夹,可能包含训练或演示所需的辅助资源
├── dataset            # 数据集相关脚本或配置,用于数据预处理或加载
│   └── audioset       # 针对 AudioSet 的数据处理逻辑
├── demo               # 示例代码,展示如何使用模型进行基础任务
├── timm_patch.sh      # 用于补丁应用的脚本,确保与 tmm 包兼容性
├── util               # 工具函数或辅助脚本
├── CODE_OF_CONDUCT    # 行为准则文件
├── CONTRIBUTING       # 贡献者指南
├── LICENSE            # 许可证信息,采用 CC-BY 4.0
├── README.md          # 主要的项目说明文档
├── dataset.py         # 数据加载器的实现
├── engine_finetune.*  # 细调相关的主程序和设置
├── engine_pretrain.*  # 预训练相关的主程序和设置
├── main_*.py          # 不同场景下的运行入口脚本
├── models_*           # 模型架构定义文件
├── submit*            # 提交到计算集群的脚本
└── mae_env.yml        # 环境配置文件,用于复现研究环境

2. 项目的启动文件介绍

项目的核心操作主要通过以下几类脚本执行:

  • main_*.py: 这些是项目的执行入口,例如 main_pretrain.py 用于启动模型的预训练过程,而 main_finetune_esc.pymain_finetune_as.py 则用于在特定数据集上的模型细调。

  • engine_*.py: 实际执行训练和评估逻辑的模块,如 engine_finetune.pyengine_pretrain.py 分别处理细调和预训练的工作流程。

  • submit*脚本: 如 submit_ft.shsubmit_pretrain_audioset2M.sh, 用于提交作业到分布式系统或集群中运行,适合大规模计算需求。

3. 项目的配置文件介绍

  • mae_env.yml: 此文件记录了项目依赖的详细环境配置,包括但不限于库版本和其他环境变量。这允许开发者通过工具如 conda 快速搭建项目所需环境。

  • 脚本中的参数:项目运行时,很多配置是通过命令行参数指定的,比如模型路径、学习率等。虽然不是传统意义上的配置文件,但在实际运行过程中,这些参数起到了关键配置作用。

为了启动项目或进行实验,首先需按照 README.md 中的步骤准备环境和数据,然后依据具体任务选择适当的启动脚本并调整相关参数。例如,通过修改或直接传递参数给 main_pretrain.py 来开始预训练,或者使用 submit_ft.sh 来在已预训练的模型上进行细调工作,确保遵循版权和许可规定,并适当调整以适应本地环境。

AudioMAE This repo hosts the code and models of "Masked Autoencoders that Listen". AudioMAE 项目地址: https://gitcode.com/gh_mirrors/au/AudioMAE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁欣秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值