AudioMAE 开源项目安装与使用指南
1. 项目目录结构及介绍
AudioMAE
是 Facebook Research 推出的一个音频处理项目,专注于通过 Masked Autoencoder 技术进行音频特征学习。下面是该仓库的主要目录结构和相关文件简介:
.
├── assets # 资源文件夹,可能包含训练或演示所需的辅助资源
├── dataset # 数据集相关脚本或配置,用于数据预处理或加载
│ └── audioset # 针对 AudioSet 的数据处理逻辑
├── demo # 示例代码,展示如何使用模型进行基础任务
├── timm_patch.sh # 用于补丁应用的脚本,确保与 tmm 包兼容性
├── util # 工具函数或辅助脚本
├── CODE_OF_CONDUCT # 行为准则文件
├── CONTRIBUTING # 贡献者指南
├── LICENSE # 许可证信息,采用 CC-BY 4.0
├── README.md # 主要的项目说明文档
├── dataset.py # 数据加载器的实现
├── engine_finetune.* # 细调相关的主程序和设置
├── engine_pretrain.* # 预训练相关的主程序和设置
├── main_*.py # 不同场景下的运行入口脚本
├── models_* # 模型架构定义文件
├── submit* # 提交到计算集群的脚本
└── mae_env.yml # 环境配置文件,用于复现研究环境
2. 项目的启动文件介绍
项目的核心操作主要通过以下几类脚本执行:
-
main_*.py: 这些是项目的执行入口,例如
main_pretrain.py
用于启动模型的预训练过程,而main_finetune_esc.py
或main_finetune_as.py
则用于在特定数据集上的模型细调。 -
engine_*.py: 实际执行训练和评估逻辑的模块,如
engine_finetune.py
和engine_pretrain.py
分别处理细调和预训练的工作流程。 -
submit*脚本: 如
submit_ft.sh
和submit_pretrain_audioset2M.sh
, 用于提交作业到分布式系统或集群中运行,适合大规模计算需求。
3. 项目的配置文件介绍
-
mae_env.yml: 此文件记录了项目依赖的详细环境配置,包括但不限于库版本和其他环境变量。这允许开发者通过工具如 conda 快速搭建项目所需环境。
-
脚本中的参数:项目运行时,很多配置是通过命令行参数指定的,比如模型路径、学习率等。虽然不是传统意义上的配置文件,但在实际运行过程中,这些参数起到了关键配置作用。
为了启动项目或进行实验,首先需按照 README.md
中的步骤准备环境和数据,然后依据具体任务选择适当的启动脚本并调整相关参数。例如,通过修改或直接传递参数给 main_pretrain.py
来开始预训练,或者使用 submit_ft.sh
来在已预训练的模型上进行细调工作,确保遵循版权和许可规定,并适当调整以适应本地环境。