nf-core/eager 开源项目教程

nf-core/eager 开源项目教程

eagerA fully reproducible and state-of-the-art ancient DNA analysis pipeline项目地址:https://gitcode.com/gh_mirrors/ea/eager

项目介绍

nf-core/eager 是一个基于 Nextflow 框架的 bioinformatics 工具箱,专门设计用于高效处理高通量测序数据(HTS)分析任务。该项目聚焦于简化复杂的生物信息学管道执行过程,使得研究人员能够快速、可靠地进行基因组和转录组数据分析。它集成了多个标准工作流程,支持从原始数据到最终结果的端到端分析,特别适合那些对速度和可重复性有严格要求的生物研究领域。

项目快速启动

在开始之前,确保您已经安装了 Docker 和 Nextflow。接下来,遵循以下步骤来快速启动 nf-core/eager:

# 安装 Nextflow (如果尚未安装)
curl -fsSL get.nextflow.io | bash

# 克隆项目仓库
git clone https://github.com/nf-core/eager.git

# 运行默认的工作流程
nextflow run nf-core/eager --help # 查看可用参数和配置选项

为了运行一个基本的数据分析流程,您可以指定输入数据路径及必要的参数。例如:

nextflow run nf-core/eager -profile docker --reads 'path/to/your_reads/*_{1,2}.fastq.gz' --genome 'human'

应用案例和最佳实践

应用案例

在癌症基因组研究中,nf-core/eager被用来分析肿瘤与正常样本的差异表达基因,通过其内置的RNA-seq分析流程,科研人员可以高效地识别出潜在的致癌基因或标志物。

最佳实践

  • 数据准备:确保您的FASTQ文件已正确质控,并且符合所选参考基因组的要求。
  • 选择正确的配置文件(-profile)以适应不同的计算环境,如云平台或本地HPC系统。
  • 利用Nextflow的参数调度机制来优化资源分配,提高运行效率。
  • 版本控制:定期检查nf-core/eager的GitHub页面更新,保持工作流程是最新的版本。

典型生态项目

在生物信息学领域,nf-core/eager与其他开源工具和服务形成了一套生态系统,这些工具包括但不限于STAR(用于读映射)、DESeq2(用于差异表达分析)以及FastQC(基础质量控制)。开发者和用户可以通过结合nf-core的其他模块或者自定义Nextflow脚本,构建更加复杂且定制化的分析流程。

通过参与nf-core社区,贡献自己的模块或反馈,可以帮助这个生态项目不断改进和扩展,满足更广泛的科研需求。


以上内容仅为简要教程概览,实际使用时请详细阅读项目文档和Nextflow框架指南,以获得最佳实践和技术细节。

eagerA fully reproducible and state-of-the-art ancient DNA analysis pipeline项目地址:https://gitcode.com/gh_mirrors/ea/eager

File "/root/Desktop/EAST-master/multigpu_train.py", line 180, in <module> tf.app.run() File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/tensorflow_core/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/absl/app.py", line 312, in run _run_main(main, args) File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/absl/app.py", line 258, in _run_main sys.exit(main(argv)) File "/root/Desktop/EAST-master/multigpu_train.py", line 110, in main total_loss, model_loss = tower_loss(iis, isms, igms, itms, reuse_variables) File "/root/Desktop/EAST-master/multigpu_train.py", line 30, in tower_loss f_score, f_geometry = model.model(images, is_training=True) File "/root/Desktop/EAST-master/model.py", line 77, in model spp_output = spp_layer(f[0]) File "/root/Desktop/EAST-master/model.py", line 44, in spp_layer strides=[1, strides[0], strides[1], 1], padding='VALID') File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/tensorflow_core/python/ops/nn_ops.py", line 3815, in max_pool name=name) File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_nn_ops.py", line 5662, in max_pool ksize = [_execute.make_int(_i, "ksize") for _i in ksize] File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_nn_ops.py", line 5662, in <listcomp> ksize = [_execute.make_int(_i, "ksize") for _i in ksize] File "/root/miniconda3/envs/txy2/lib/python3.7/site-packages/tensorflow_core/python/eager/execute.py", line 169, in make_int (arg_name, repr(v))) TypeError: Expected int for argument 'ksize' not <tf.Tensor 'model_0/feature_fusion/SpatialPyramidPooling/strided_slice_2:0' shape=() dtype=int32>. Process finished with exit code 1
05-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤高崇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值