ART项目使用教程

ART项目使用教程

ART PyTorch code for our ICLR 2023 paper "Accurate Image Restoration with Attention Retractable Transformer". ART 项目地址: https://gitcode.com/gh_mirrors/art4/ART

1. 项目介绍

ART(Attention Retractable Transformer)是一个基于PyTorch的图像恢复模型,由Jiale Zhang等人在ICLR 2023上发表的论文《Accurate Image Restoration with Attention Retractable Transformer》中提出。该模型通过结合密集和稀疏注意力模块,显著提升了图像恢复任务的性能,包括图像超分辨率、去噪和JPEG压缩伪影减少等任务。

2. 项目快速启动

环境要求

  • Python 3.8
  • PyTorch >= 1.8.0
  • NVIDIA GPU + CUDA

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/gladzhang/ART.git
    cd ART
    
  2. 安装依赖:

    pip install -r requirements.txt
    
  3. 安装项目:

    python setup.py develop
    

测试示例

以下是一些测试示例代码,用于在不同任务上测试ART模型:

图像超分辨率测试
python -m torch.distributed.launch --nproc_per_node=4 --master_port=2414 basicsr/train.py -opt options/train/train_ART_SR_x4.yml --launcher pytorch
彩色图像去噪测试
python -m torch.distributed.launch --nproc_per_node=4 --master_port=2414 basicsr/train.py -opt options/train/train_ART_ColorDN_level50.yml --launcher pytorch
真实图像去噪测试
python -m torch.distributed.launch --nproc_per_node=8 --master_port=2414 basicsr/train.py -opt options/train_ART_RealDN.yml --launcher pytorch

3. 应用案例和最佳实践

应用案例

ART模型在多个图像恢复任务中表现出色,包括但不限于:

  • 图像超分辨率:将低分辨率图像提升到高分辨率。
  • 彩色图像去噪:去除彩色图像中的噪声。
  • 真实图像去噪:处理真实场景中的图像噪声。
  • JPEG压缩伪影减少:减少JPEG压缩带来的图像伪影。

最佳实践

  • 数据准备:确保训练和测试数据集的正确准备和放置。
  • 模型选择:根据具体任务选择合适的ART模型变体(如ART-S、ART等)。
  • 超参数调整:根据任务需求调整训练超参数,如学习率、批量大小等。

4. 典型生态项目

ART项目作为一个开源的图像恢复工具,可以与其他图像处理和计算机视觉项目结合使用,例如:

  • OpenCV:用于图像预处理和后处理。
  • PyTorch Lightning:用于简化训练流程和模型管理。
  • TensorFlow:用于与其他深度学习模型的集成。

通过结合这些生态项目,可以进一步扩展ART的应用场景和功能。

ART PyTorch code for our ICLR 2023 paper "Accurate Image Restoration with Attention Retractable Transformer". ART 项目地址: https://gitcode.com/gh_mirrors/art4/ART

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴铎根

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值