tflite-cv-example 项目使用教程
1. 项目目录结构及介绍
tflite-cv-example/
├── 3rdparty/
├── benchmark/
├── camouflage/
├── centernet/
├── classify/
├── deeplab/
├── deeplab_edgetpu2/
├── detection/
├── ffnet/
├── libedgetpu/
├── mosaic/
├── segmentation/
├── super_resolution/
├── tensorflow/
├── utils/
├── yolox/
├── .gitignore
├── .gitmodules
├── LICENSE
└── README.md
目录结构介绍
- 3rdparty/: 第三方库目录。
- benchmark/: 用于性能测试的代码。
- camouflage/: 用于对象检测和伪装对象的代码。
- centernet/: 用于CenterNet模型推理的代码。
- classify/: 用于图像分类的代码。
- deeplab/: 用于DeepLab语义分割的代码。
- deeplab_edgetpu2/: 用于DeepLab V3+ EdgeTPU V2和AutoSeg EdgeTPU的代码。
- detection/: 用于对象检测的代码。
- ffnet/: 用于VisionFive 2 TensorFlow Lite GPU Delegate的代码。
- libedgetpu/: Edge TPU库目录。
- mosaic/: 用于图像拼接的代码。
- segmentation/: 用于图像分割的代码。
- super_resolution/: 用于超分辨率处理的代码。
- tensorflow/: TensorFlow相关代码。
- utils/: 工具类代码。
- yolox/: 用于YOLOX模型推理的代码。
- .gitignore: Git忽略文件配置。
- .gitmodules: Git子模块配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
2. 项目启动文件介绍
项目中没有明确的“启动文件”,但可以根据具体任务选择相应的目录和文件进行启动。例如:
- 如果要进行图像分类,可以启动
classify/
目录下的相关脚本。 - 如果要进行对象检测,可以启动
detection/
目录下的相关脚本。
具体启动方式请参考各个目录下的 README.md
文件或脚本注释。
3. 项目配置文件介绍
项目中没有统一的配置文件,但各个模块可能有自己的配置文件或参数设置。例如:
- 在
classify/
目录下,可能会有一个配置文件用于指定模型路径、输入图像路径等。 - 在
detection/
目录下,可能会有一个配置文件用于指定检测模型的参数。
具体配置文件的位置和内容请参考各个模块的 README.md
文件或脚本注释。
以上是 tflite-cv-example
项目的基本使用教程,具体细节请参考项目中的 README.md
文件和各个模块的文档。