Lazypredict 开源项目教程

Lazypredict 开源项目教程

lazypredictLazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning项目地址:https://gitcode.com/gh_mirrors/la/lazypredict

1. 项目的目录结构及介绍

Lazypredict 是一个用于快速模型比较的开源工具,其目录结构如下:

lazypredict/
├── LICENSE
├── README.md
├── setup.py
├── lazypredict/
│   ├── __init__.py
│   ├── Supervised.py
│   ├── utils.py
│   └── __main__.py
└── tests/
    ├── __init__.py
    └── test_lazypredict.py

主要文件介绍:

  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文档。
  • setup.py: 用于安装项目的脚本。
  • lazypredict/: 主代码目录。
    • __init__.py: 初始化文件。
    • Supervised.py: 包含监督学习模型的主要逻辑。
    • utils.py: 工具函数。
    • __main__.py: 项目的入口文件。
  • tests/: 测试代码目录。
    • __init__.py: 初始化文件。
    • test_lazypredict.py: 测试用例。

2. 项目的启动文件介绍

项目的启动文件是 lazypredict/__main__.py。这个文件定义了如何启动和运行 Lazypredict 工具。通常,你可以通过以下命令来运行项目:

python -m lazypredict

__main__.py 文件中包含了主要的执行逻辑,它会调用 Supervised.py 中的函数来进行模型比较和评估。

3. 项目的配置文件介绍

Lazypredict 项目本身没有显式的配置文件,因为它主要依赖于输入的数据集和一些可选的参数。这些参数可以通过命令行或编程接口传递。

例如,在使用 Lazypredict 时,你可以通过以下方式传递参数:

from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

data = load_breast_cancer()
X = data.data
y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

clf = LazyClassifier(verbose=0, ignore_warnings=True, custom_metric=None)
models, predictions = clf.fit(X_train, X_test, y_train, y_test)

print(models)

在这个例子中,LazyClassifier 的参数如 verbose, ignore_warnings, 和 custom_metric 都是通过编程接口传递的配置参数。

lazypredictLazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning项目地址:https://gitcode.com/gh_mirrors/la/lazypredict

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水照均Farrah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值