BertQA-Attention-on-Steroids 项目使用指南
BertQA-Attention-on-Steroids 项目地址: https://gitcode.com/gh_mirrors/be/BertQA-Attention-on-Steroids
1. 项目目录结构及介绍
BertQA-Attention-on-Steroids/
├── data/
│ ├── dataset/
│ └── processed/
├── models/
│ ├── bert_model.py
│ └── attention_layers.py
├── scripts/
│ ├── train.py
│ ├── evaluate.py
│ └── preprocess.py
├── config/
│ ├── config.yaml
│ └── hyperparameters.json
├── README.md
├── requirements.txt
└── setup.py
目录结构说明
-
data/: 存放数据集和预处理后的数据。
- dataset/: 原始数据集文件。
- processed/: 预处理后的数据文件。
-
models/: 存放模型的定义和实现。
- bert_model.py: BERT模型的定义。
- attention_layers.py: 自定义注意力层的实现。
-
scripts/: 存放项目的脚本文件。
- train.py: 训练模型的脚本。
- evaluate.py: 评估模型的脚本。
- preprocess.py: 数据预处理的脚本。
-
config/: 存放项目的配置文件。
- config.yaml: 主要的配置文件,包含数据路径、模型参数等。
- hyperparameters.json: 超参数配置文件。
-
README.md: 项目介绍和使用说明。
-
requirements.txt: 项目依赖的Python包列表。
-
setup.py: 项目安装脚本。
2. 项目的启动文件介绍
scripts/train.py
train.py
是项目的启动文件,用于训练BERT模型。该脚本的主要功能包括:
- 加载配置文件和超参数。
- 加载数据集并进行预处理。
- 初始化BERT模型和自定义注意力层。
- 训练模型并保存训练好的模型。
使用方法
python scripts/train.py --config config/config.yaml --params config/hyperparameters.json
参数说明
--config
: 指定配置文件路径。--params
: 指定超参数配置文件路径。
3. 项目的配置文件介绍
config/config.yaml
config.yaml
是项目的主要配置文件,包含数据路径、模型参数等信息。以下是配置文件的部分内容示例:
data:
dataset_path: "data/dataset/"
processed_path: "data/processed/"
model:
bert_model_name: "bert-base-uncased"
attention_layers: 4
training:
batch_size: 32
epochs: 10
learning_rate: 2e-5
config/hyperparameters.json
hyperparameters.json
是超参数配置文件,包含模型训练过程中使用的超参数。以下是配置文件的部分内容示例:
{
"learning_rate": 2e-5,
"batch_size": 32,
"num_epochs": 10,
"max_seq_length": 128
}
总结
本指南介绍了 BertQA-Attention-on-Steroids
项目的目录结构、启动文件和配置文件。通过阅读本指南,您可以快速了解项目的结构和使用方法,并开始进行模型的训练和评估。
BertQA-Attention-on-Steroids 项目地址: https://gitcode.com/gh_mirrors/be/BertQA-Attention-on-Steroids