机器学习与金融课程教程
一、项目目录结构及介绍
本项目是纽约大学Tandon工程学院2022年机器学习与金融课程的教程,包含幻灯片、代码片段和作业。项目目录结构按周组织,每周的课程材料都包含在一个单独的文件夹中。
MLSys-NYU-2022/
├── Week1/
│ ├── README.md
│ ├── slides/
│ ├── scripts/
│ └── notebooks/
├── Week2/
│ ├── README.md
│ ├── slides/
│ ├── scripts/
│ └── notebooks/
├── ...
└── Week14/
├── README.md
├── slides/
├── scripts/
└── notebooks/
Week1/Week2/.../Week14/
:每个文件夹对应课程的一周,包含那一周的阅读材料、幻灯片、脚本和笔记本。README.md
:介绍该周的概述、目标和课程内容。slides/
:包含该周的PPT幻灯片。scripts/
:包含该周使用的Python脚本。notebooks/
:包含该周的Jupyter笔记本,用于实践和作业。
二、项目的启动文件介绍
项目的启动主要是通过Jupyter Notebook进行。用户需要确保已经安装了Python环境以及所需的库。以下是启动Jupyter Notebook的一般步骤:
- 打开命令行界面。
- 切换到项目目录下。
- 运行命令
jupyter notebook
,这将启动Jupyter Notebook服务器。 - 在浏览器中打开出现的URL,通常为
http://localhost:8888
,开始浏览和执行笔记本。
三、项目的配置文件介绍
本项目使用 requirements.txt
文件来管理Python环境中的依赖库。用户需要执行以下步骤来配置环境:
- 打开命令行界面。
- 切换到项目目录下。
- 运行命令
pip install -r requirements.txt
,这将安装所有列出的库。
此外,某些周次可能需要额外的配置文件,例如数据集或特定的模型参数文件。这些文件通常会在相应的周次文件夹中提供详细说明。用户应按照 README.md
中的指示进行配置。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考