机器学习与金融课程教程

机器学习与金融课程教程

MLSys-NYU-2022 Slides, scripts and materials for the Machine Learning in Finance Course at NYU Tandon, 2022 MLSys-NYU-2022 项目地址: https://gitcode.com/gh_mirrors/ml/MLSys-NYU-2022

一、项目目录结构及介绍

本项目是纽约大学Tandon工程学院2022年机器学习与金融课程的教程,包含幻灯片、代码片段和作业。项目目录结构按周组织,每周的课程材料都包含在一个单独的文件夹中。

MLSys-NYU-2022/
├── Week1/
│   ├── README.md
│   ├── slides/
│   ├── scripts/
│   └── notebooks/
├── Week2/
│   ├── README.md
│   ├── slides/
│   ├── scripts/
│   └── notebooks/
├── ...
└── Week14/
    ├── README.md
    ├── slides/
    ├── scripts/
    └── notebooks/
  • Week1/Week2/.../Week14/:每个文件夹对应课程的一周,包含那一周的阅读材料、幻灯片、脚本和笔记本。
  • README.md:介绍该周的概述、目标和课程内容。
  • slides/:包含该周的PPT幻灯片。
  • scripts/:包含该周使用的Python脚本。
  • notebooks/:包含该周的Jupyter笔记本,用于实践和作业。

二、项目的启动文件介绍

项目的启动主要是通过Jupyter Notebook进行。用户需要确保已经安装了Python环境以及所需的库。以下是启动Jupyter Notebook的一般步骤:

  1. 打开命令行界面。
  2. 切换到项目目录下。
  3. 运行命令 jupyter notebook,这将启动Jupyter Notebook服务器。
  4. 在浏览器中打开出现的URL,通常为 http://localhost:8888,开始浏览和执行笔记本。

三、项目的配置文件介绍

本项目使用 requirements.txt 文件来管理Python环境中的依赖库。用户需要执行以下步骤来配置环境:

  1. 打开命令行界面。
  2. 切换到项目目录下。
  3. 运行命令 pip install -r requirements.txt,这将安装所有列出的库。

此外,某些周次可能需要额外的配置文件,例如数据集或特定的模型参数文件。这些文件通常会在相应的周次文件夹中提供详细说明。用户应按照 README.md 中的指示进行配置。

MLSys-NYU-2022 Slides, scripts and materials for the Machine Learning in Finance Course at NYU Tandon, 2022 MLSys-NYU-2022 项目地址: https://gitcode.com/gh_mirrors/ml/MLSys-NYU-2022

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙嫣女

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值