《HART 项目安装与使用教程》
1. 项目目录结构及介绍
HART 项目的目录结构如下:
hart/
├── data/ # 存放数据集
├── docs/ # 项目文档
├── experiments/ # 存放实验配置和结果
├── hart/ # 主程序目录
│ ├── __init__.py
│ ├── dataset.py # 数据集处理相关代码
│ ├── model.py # 模型代码
│ ├── trainer.py # 训练器代码
│ └── utils.py # 工具函数
├── requirements.txt # 项目依赖
├── setup.py # 项目设置文件
└── train.py # 项目启动文件
data/
:此目录用于存放项目所使用的数据集。docs/
:包含项目的文档,如用户手册、API 文档等。experiments/
:存放不同实验的配置文件和结果。hart/
:项目的核心代码目录,包含了数据集处理、模型定义、训练器以及工具函数。requirements.txt
:列出项目运行所需的依赖库。setup.py
:项目设置文件,通常用于安装项目作为 Python 包。train.py
:项目的启动文件,用于开始训练过程。
2. 项目的启动文件介绍
项目的启动文件是 train.py
。该文件的主要作用是:
- 解析命令行参数。
- 加载数据集。
- 初始化模型。
- 设置训练器。
- 开始训练循环。
以下是 train.py
的简化示例代码:
import argparse
from hart import dataset, model, trainer
def main():
parser = argparse.ArgumentParser(description="HART 训练脚本")
# 添加命令行参数
parser.add_argument("--config", type=str, default="default", help="配置文件路径")
args = parser.parse_args()
# 加载数据集
train_data, val_data = dataset.load_data()
# 初始化模型
net = model.Net()
# 设置训练器
trainer = trainer.Trainer(net)
# 开始训练
trainer.train(train_data, val_data)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件通常位于 experiments/
目录下,用于定义实验的具体参数,例如数据集路径、模型参数、训练参数等。配置文件通常是一个 Python 字典,可以被 train.py
或其他程序读取并应用于程序运行。
下面是一个配置文件的示例:
# experiments/default_config.py
config = {
"data_path": "path/to/data",
"batch_size": 64,
"learning_rate": 0.001,
"epochs": 10,
"model": {
"type": "ResNet",
"kwargs": {
"num_classes": 1000
}
},
"trainer": {
"type": "SimpleTrainer",
"kwargs": {}
}
}
在上面的配置文件中,定义了数据集路径、批大小、学习率、训练周期、模型类型和参数以及训练器的类型和参数。这些配置项在 train.py
中通过参数解析被读取并应用到相应的模块中。