DFormer: 重新思考RGB-D表示学习用于语义分割

DFormer: 重新思考RGB-D表示学习用于语义分割

DFormer [ICLR 2024] DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation DFormer 项目地址: https://gitcode.com/gh_mirrors/df/DFormer

项目介绍

DFormer是一种基于扩散指导的Transformer模型,专为普遍图像分割设计。该模型提出了解决现有方法中RGB预训练骨干网络与深度图的3D几何关系不匹配的问题,这是在RGB-D表示学习中的一个常见挑战。通过轻量级解码器头的微调,DFormer在RGB-D语义分割和RGB-D显著物体检测任务上达到了新的州际艺术水平,且其计算成本低于目前最优方法的一半。项目在ICLR 2024上被接受,代码及说明文档可供研究者使用和贡献。

项目快速启动

环境配置

首先,确保你的系统已安装Anaconda或Miniconda。然后,创建一个新的环境并激活它:

conda create -n dformer python=3.10 -y
conda activate dformer

接下来,安装必要的依赖包,确保CUDA版本兼容(本示例假设使用CUDA 11.8):

conda install -c pytorch -c nvidia pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
pip install tqdm opencv-python scipy tensorboardX tabulate easydict ftfy regex

下载数据集与模型权重

将数据集放置于datasets文件夹下,或者使用符号链接指向数据的实际位置。数据集可从Google Drive、OneDrive或Baidu Netdisk获取。对于初次使用者,需自行处理数据,并利用如plt.imsave()方法将深度图(npy格式)转换为png格式以符合项目要求。

应用案例和最佳实践

DFormer的成功在于其在RGB-D场景下的广泛应用能力。为了实现最佳实践,开发者应首先通过预训练模型进行微调,针对特定的语义分割或显著物体检测任务,采用轻量级解码器。具体步骤涉及准备相应的数据标签,调整模型参数,并执行训练脚本:

# 示例训练命令
python train.sh --cfg ./path/to/config.yaml

这里的config.yaml需要替换为对应任务的具体配置文件路径,确保配置正确反映数据集路径和模型细节。

典型生态项目

DFormer不仅作为一个独立的项目存在,也为RGB-D领域的研究打开了新的可能性。通过其提供的RGB-D预训练代码,研究者可以进一步开发更强大的RGB-D编码器,促进相关领域的进步。社区成员被鼓励分享自己的实验成果,无论是改进的训练策略还是新的应用场景,以此丰富项目的生态环境。


以上即为DFormer项目的基本介绍、快速启动指南、应用实例概述以及其对生态系统的影响。参与此项目的研究人员和开发者可以通过交流和贡献,共同推动RGB-D表示学习领域的发展。

DFormer [ICLR 2024] DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation DFormer 项目地址: https://gitcode.com/gh_mirrors/df/DFormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉妤秋Swift

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值