GraftNet 开源项目使用教程
GraftNet项目地址:https://gitcode.com/gh_mirrors/gra/GraftNet
1. 项目的目录结构及介绍
GraftNet 项目的目录结构如下:
GraftNet/
├── data/
│ ├── processed/
│ └── raw/
├── docs/
├── src/
│ ├── models/
│ ├── utils/
│ └── main.py
├── config/
│ └── config.yaml
├── tests/
├── .gitignore
├── LICENSE
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放数据文件,包括原始数据 (
raw/
) 和处理后的数据 (processed/
)。 - docs/: 存放项目文档。
- src/: 项目源代码目录,包含模型 (
models/
)、工具函数 (utils/
) 和主启动文件 (main.py
)。 - config/: 配置文件目录,包含项目的主要配置文件 (
config.yaml
)。 - tests/: 测试代码目录。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖包列表。
2. 项目的启动文件介绍
项目的启动文件位于 src/main.py
。该文件是整个项目的入口点,负责初始化配置、加载数据、构建模型并启动训练或推理过程。
main.py
主要功能
- 读取配置文件 (
config/config.yaml
)。 - 初始化数据加载器。
- 构建模型。
- 定义训练或推理流程。
- 启动训练或推理过程。
3. 项目的配置文件介绍
项目的配置文件位于 config/config.yaml
。该文件采用 YAML 格式,包含项目运行所需的各种配置参数。
config.yaml
主要内容
data:
path: "data/processed"
batch_size: 32
model:
name: "GraftNet"
layers: 5
training:
epochs: 100
learning_rate: 0.001
logging:
level: "INFO"
配置文件介绍
- data: 数据相关配置,包括数据路径 (
path
) 和批处理大小 (batch_size
)。 - model: 模型相关配置,包括模型名称 (
name
) 和层数 (layers
)。 - training: 训练相关配置,包括训练轮数 (
epochs
) 和学习率 (learning_rate
)。 - logging: 日志相关配置,包括日志级别 (
level
)。
以上是 GraftNet 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的详细介绍。希望这些内容能帮助你更好地理解和使用该项目。