ChemicalX 开源项目使用教程

ChemicalX 开源项目使用教程

chemicalx A PyTorch and TorchDrug based deep learning library for drug pair scoring. (KDD 2022) chemicalx 项目地址: https://gitcode.com/gh_mirrors/ch/chemicalx

1. 项目介绍

ChemicalX 是一个基于 PyTorch 和 TorchDrug 的深度学习库,专门用于药物配对评分任务。该库旨在预测药物-药物相互作用、多药副作用和协同作用。ChemicalX 包含了数据加载器和集成基准数据集,并提供了最先进的深度神经网络架构来解决药物配对评分任务。这些实现的方法涵盖了传统的 SMILES 字符串技术和基于神经消息传递的模型。

2. 项目快速启动

安装

首先,确保你已经安装了 PyTorch 1.10.0。然后,按照以下步骤安装 ChemicalX:

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.0+$[CUDA].html
pip install torchdrug
pip install chemicalx

其中,$[CUDA] 应替换为 cpucu102cu111,具体取决于你的 PyTorch 安装。

快速启动代码示例

以下是一个简单的代码示例,展示了如何使用 ChemicalX 进行模型训练和评估:

from chemicalx import pipeline
from chemicalx.models import DeepSynergy
from chemicalx.data import DrugCombDB

# 初始化模型
model = DeepSynergy(context_channels=112, drug_channels=256)

# 加载数据集
dataset = DrugCombDB()

# 运行训练和评估管道
results = pipeline(
    dataset=dataset,
    model=model,
    batch_size=5120,
    context_features=True,
    drug_features=True,
    drug_molecules=False,
    epochs=100,
)

# 输出结果摘要
results.summarize()

# 保存结果
results.save("~/test_results/")

3. 应用案例和最佳实践

应用案例

ChemicalX 可以应用于多种药物配对评分任务,包括但不限于:

  • 药物-药物相互作用预测:预测两种药物同时使用时的相互作用。
  • 多药副作用预测:预测多种药物同时使用时可能产生的副作用。
  • 药物协同作用预测:预测两种药物组合使用时的协同效应。

最佳实践

  • 数据预处理:在使用 ChemicalX 之前,确保数据集已经过适当的预处理,包括数据清洗和特征提取。
  • 模型选择:根据具体的任务选择合适的模型。ChemicalX 提供了多种模型,如 DeepSynergy、MR-GNN 等。
  • 超参数调优:通过调整模型的超参数(如 context_channelsdrug_channels)来优化模型性能。

4. 典型生态项目

ChemicalX 作为一个深度学习库,可以与其他相关项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:

  • TorchDrug:一个基于 PyTorch 的药物发现和化学信息学库,提供了丰富的工具和模型来处理药物数据。
  • PyTorch Geometric:一个用于处理图结构数据的 PyTorch 扩展库,适用于图神经网络的开发和应用。
  • RDKit:一个开源的化学信息学库,提供了处理化学分子和化学数据的功能。

通过结合这些生态项目,ChemicalX 可以进一步扩展其应用领域,提供更强大的药物配对评分解决方案。

chemicalx A PyTorch and TorchDrug based deep learning library for drug pair scoring. (KDD 2022) chemicalx 项目地址: https://gitcode.com/gh_mirrors/ch/chemicalx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑眉允Well-Born

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值