RoRF:基于随机森林的LLM路由框架
RoRF Routing on Random Forest (RoRF) 项目地址: https://gitcode.com/gh_mirrors/ro/RoRF
项目介绍
RoRF(Routing on Random Forests)是一个用于训练和部署基于随机森林的LLM(Large Language Model)路由器的开源框架。该框架的核心功能是智能地在多个语言模型之间分配任务,以优化成本和性能的平衡。RoRF通过实验证明了两种主要优势:一是能够在保持强模型性能的同时,通过在强弱模型之间路由来降低成本;二是能够在两个强模型之间路由,降低成本的同时,还能超越单独使用任一模型的表现。
RoRF提供了12个预训练的路由器,涵盖了6对模型和2种嵌入模型,这些路由器在降低成本的同时,能够维持或提升性能。与现有的路由解决方案相比,RoRF的预训练路由器表现出更优的性能。
项目技术分析
RoRF的技术基础是随机森林算法,它是一种集成学习方法,通过构建多棵决策树并对它们的结果进行投票来预测输出。在RoRF中,每棵树都是在一个数据集上训练的,这个数据集包含输入文本以及不同模型对该文本的响应分数。通过这种方式,RoRF能够学习到在不同场景下,哪个模型更有可能提供最佳的响应。
框架的关键组件包括:
- 预训练路由器:12个预训练的路由器基于2种嵌入模型,分别为开源的jinaai/jina-embeddings-v3和闭源的voyageai/voyage-large-2-instruct。
- 控制器(Controller):用于替换现有的路由设置,根据输入请求选择最合适的模型。
- 阈值校准(Threshold Calibration):通过调整阈值,用户可以自定义模型调用比例,以实现成本和性能之间的最佳平衡。
项目技术应用场景
RoRF适用于多种需要成本优化和性能保障的场景,如:
- 对话系统:在保持高质量对话体验的同时,减少成本。
- 内容生成:在生成高质量内容的同时,根据内容复杂度动态调整模型。
- 搜索引擎:根据搜索请求的难度,选择最合适的模型进行响应。
项目特点
RoRF具有以下显著特点:
- 灵活的路由策略:能够根据输入请求动态选择最合适的模型。
- 成本效益:通过智能路由减少不必要的模型调用,降低成本。
- 易于部署:预训练路由器可以直接使用,也可以根据用户数据进一步定制。
- 性能优越:实验结果表明,RoRF在保持或提升性能的同时,能够有效降低成本。
以下是一个简单的使用示例:
from rorf.controller import Controller
router = Controller(
router="notdiamond/rorf-jina-llama31405b-llama3170b",
model_a="llama-3.1-405b-instruct",
model_b="llama-3.1-70b-instruct",
threshold=0.3,
)
recommended_model = router.route("What is the meaning of life?")
print(f"Recommended model: {recommended_model}")
在这个示例中,RoRF会根据输入的查询请求,动态选择是使用model_a
(通常更强的模型)还是model_b
(通常较弱的模型)来生成响应。
总结而言,RoRF是一个强大的开源框架,它能够帮助用户在多个LLM之间实现高效的路由,以达到成本和性能的最佳平衡。无论是企业还是个人开发者,都可以通过RoRF来优化他们的语言模型部署,提升效率和用户体验。
RoRF Routing on Random Forest (RoRF) 项目地址: https://gitcode.com/gh_mirrors/ro/RoRF