GraphGen:提升LLM知识覆盖的合成数据生成框架

GraphGen:提升LLM知识覆盖的合成数据生成框架

GraphGen GraphGen: Enhancing Supervised Fine-Tuning for LLMs with Knowledge-Driven Synthetic Data Generation GraphGen 项目地址: https://gitcode.com/gh_mirrors/graphge/GraphGen

项目介绍

GraphGen是一款基于知识图的合成数据生成框架,它通过构建细粒度的知识图谱,并利用这一图谱指导生成能够弥补大型语言模型(LLM)知识缺口的问答(QA)数据。GraphGen的核心在于通过合成数据增强监督微调过程,从而提高LLM的性能,特别是在长尾知识上的表现。

项目技术分析

GraphGen的工作流程开始于从源文本构建一个细粒度的知识图谱。然后,它使用预期校准误差(Expected Calibration Error)指标来识别LLM中的知识空白。GraphGen优先生成针对高价值、长尾知识的QA对,从而提高模型在这些领域的表现。此外,GraphGen还采用多跳邻居采样来捕捉复杂的关系信息,并利用风格控制的生成技术来增加生成的QA数据的多样性。

GraphGen的系统架构包括多个模块,从知识图的构建到数据的生成,再到与训练模型的集成。它不仅提供了从PyPI直接安装的便捷性,还支持从源代码运行,允许用户自定义配置以适应不同的使用场景。

项目及技术应用场景

GraphGen的应用场景广泛,尤其在需要提升LLM在特定领域知识表现的任务中表现出色。以下是一些具体的应用场景:

  1. 教育领域:为在线学习平台生成定制化的问答数据,帮助学生更好地理解和掌握课程内容。
  2. 客户服务:增强聊天机器人在特定行业问题上的回答能力,提供更准确的客户支持。
  3. 内容审核:利用GraphGen生成的数据来训练内容审核模型,提高模型对违规内容的识别能力。

项目特点

GraphGen的以下几个特点使其在合成数据生成领域独树一帜:

  1. 知识驱动:通过构建知识图谱,GraphGen能够生成针对LLM知识缺口的定制化数据。
  2. 多跳邻居采样:这种采样策略使得GraphGen能够捕捉到更复杂的关系信息,生成更有深度的QA数据。
  3. 风格控制生成:GraphGen能够生成具有多样性的数据,这有助于模型在多种语言风格下的泛化能力。

如何使用GraphGen

GraphGen的安装和使用过程非常简单。用户可以通过以下步骤开始:

  1. 安装GraphGen:通过运行pip install graphg命令安装GraphGen。
  2. 配置环境:在.env文件中设置合成器模型(Synthesizer)和训练模型(Trainee)的相关参数。
  3. 生成数据:通过运行bash scripts/generate.sh命令来生成数据,生成的数据将存储在cache/data/graphgen目录下。

最新更新

GraphGen的初始版本于2025年4月21日发布,目前正处于积极的开发和迭代阶段。

系统架构

GraphGen的系统架构详细图可以在这里找到,图中展示了系统的各个组件和它们之间的相互作用。

系统架构

GraphGen不仅为LLM的监督微调提供了新的视角,而且通过合成数据的方式,为模型训练带来了新的可能性。如果你正在寻找一种方法来提升LLM在特定领域的表现,GraphGen绝对值得一试。

GraphGen GraphGen: Enhancing Supervised Fine-Tuning for LLMs with Knowledge-Driven Synthetic Data Generation GraphGen 项目地址: https://gitcode.com/gh_mirrors/graphge/GraphGen

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘韶同

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值