基于PaddleX-Flask-VUE的医疗AI开源项目介绍
1. 项目基础介绍及编程语言
本项目是一个开源的医疗AI项目,名为“PaddleX-Flask-VUE-demo”,托管在GitHub上。项目主要使用Python作为后端编程语言,采用Flask框架进行开发;前端则使用Vue.js框架,实现了前后端分离的架构。项目通过结合PaddleX深度学习平台,实现了一个基于AI的眼部医疗辅助系统。
2. 项目的核心功能
该项目的核心功能是利用PaddleX提供的FastSCNN语义分割模型,在眼部图像视盘分割数据集上进行训练,然后通过Web界面提供图像上传、分割预测以及结果可视化的服务。具体功能包括:
- 模型训练:使用PaddleX对眼部图像数据进行预处理、训练和评估,训练出能够准确分割视盘的模型。
- 模型部署:将训练好的模型部署到Web应用中,实现实时图像分割。
- Web界面:通过Vue.js开发的前端界面,用户可以上传眼部图像,并查看分割结果。
3. 项目最近更新的功能
根据项目的最新更新,以下是一些新增或改进的功能:
- 模型导出:项目新增了模型导出功能,将训练好的模型导出为可用于推理部署的格式,便于在不同的环境中使用。
- 结果可视化:改进了分割结果的可视化效果,增加了权重因子,使得分割结果与原图的融合更加自然。
- 代码优化:对项目代码进行了优化,提升了运行效率和稳定性。
项目持续更新中,社区用户可以根据需求提出新的功能和改进建议,共同推动项目的发展。