开源项目 Data-Structures 使用教程

开源项目 Data-Structures 使用教程

Data-Structres浙江大学《数据结构》上课笔记 + 数据结构实现 + 课后题题解项目地址:https://gitcode.com/gh_mirrors/da/Data-Structres

1. 项目的目录结构及介绍

Data-Structures/
├── README.md
├── src/
│   ├── array.py
│   ├── linked_list.py
│   ├── stack.py
│   ├── queue.py
│   ├── tree.py
│   └── graph.py
└── tests/
    ├── test_array.py
    ├── test_linked_list.py
    ├── test_stack.py
    ├── test_queue.py
    ├── test_tree.py
    └── test_graph.py
  • README.md: 项目介绍文件,包含项目的基本信息和使用说明。
  • src/: 源代码目录,包含各种数据结构的实现文件。
    • array.py: 数组数据结构的实现。
    • linked_list.py: 链表数据结构的实现。
    • stack.py: 栈数据结构的实现。
    • queue.py: 队列数据结构的实现。
    • tree.py: 树数据结构的实现。
    • graph.py: 图数据结构的实现。
  • tests/: 测试代码目录,包含各个数据结构的测试文件。
    • test_array.py: 数组数据结构的测试。
    • test_linked_list.py: 链表数据结构的测试。
    • test_stack.py: 栈数据结构的测试。
    • test_queue.py: 队列数据结构的测试。
    • test_tree.py: 树数据结构的测试。
    • test_graph.py: 图数据结构的测试。

2. 项目的启动文件介绍

项目的启动文件主要是各个数据结构的实现文件,例如 array.pylinked_list.py 等。用户可以根据需要直接导入这些文件中的类和函数进行使用。

例如,使用数组数据结构:

from src.array import Array

arr = Array()
arr.append(1)
arr.append(2)
print(arr)

3. 项目的配置文件介绍

该项目没有专门的配置文件。所有的配置和参数都在各个数据结构的实现文件中进行定义和处理。用户在使用时,直接调用相应的类和函数即可。

例如,链表数据结构的使用:

from src.linked_list import LinkedList

ll = LinkedList()
ll.append(1)
ll.append(2)
ll.append(3)
print(ll)

以上是 Data-Structures 项目的基本使用教程,用户可以根据需要进一步探索和使用各个数据结构的详细功能。

Data-Structres浙江大学《数据结构》上课笔记 + 数据结构实现 + 课后题题解项目地址:https://gitcode.com/gh_mirrors/da/Data-Structres

Hadoop是一个开源的分布式计算框架,广泛应用于海量数据的处理和存储。在Hadoop中,文件是存储数据的基本单位。为了方便数据的存储和访问,Hadoop提供了一些文件格式和数据结构,如SequenceFile、MapFile、Avro等。本文将重点介绍Hadoop中的SequenceFile和MapFile。 ### SequenceFile SequenceFile是Hadoop中的二进制文件格式,用于存储序列化的键值对。它的设计初衷是为了解决Hadoop中的大文件问题。在Hadoop中,一个文件被分成若干个块(block)存储在不同的节点上,每个块的大小默认为128MB。如果一个小文件只占用了一小部分块,那么存储这个小文件的块会浪费很多空间。而使用SequenceFile可以将多个小文件合并成一个SequenceFile,从而节省存储空间。 SequenceFile支持三种压缩方式:无压缩、记录压缩和块压缩。无压缩是最简单的方式,将键值对直接写入文件中。记录压缩是将每个键值对压缩后再写入文件中,可以减少文件大小,但需要额外的CPU时间进行压缩和解压缩。块压缩是将多个键值对组成一个块,然后对整个块进行压缩,可以进一步减小文件大小,但也需要额外的CPU时间进行压缩和解压缩。 SequenceFile的读写可以使用Hadoop API或者MapReduce API进行操作。下面是一个使用Hadoop API写入SequenceFile的示例代码: ``` Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path path = new Path("/path/to/seqfile"); SequenceFile.Writer writer = SequenceFile.createWriter(fs, conf, path, Text.class, IntWritable.class); try { writer.append(new Text("key1"), new IntWritable(1)); writer.append(new Text("key2"), new IntWritable(2)); writer.append(new Text("key3"), new IntWritable(3)); } finally { writer.close(); } ``` 上面的代码创建了一个SequenceFile,并向其中写入了三个键值对。键的类型为Text,值的类型为IntWritable。 下面是一个使用Hadoop API读取SequenceFile的示例代码: ``` Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path path = new Path("/path/to/seqfile"); SequenceFile.Reader reader = new SequenceFile.Reader(fs, path, conf); try { Text key = new Text(); IntWritable value = new IntWritable(); while (reader.next(key, value)) { System.out.println(key.toString() + ": " + value.get()); } } finally { reader.close(); } ``` 上面的代码打开了一个SequenceFile,并循环读取其中的键值对并打印出来。 ### MapFile MapFile是Hadoop中的一种基于键的数据结构,用于快速查询和修改数据。它的设计思想是将多个小文件合并成一个大文件,并建立一个索引,方便快速访问数据。 MapFile由两部分组成:数据部分和索引部分。数据部分是一个SequenceFile,用于存储键值对。索引部分是一个B树,用于快速定位键对应的值的位置。当访问某个键对应的值时,MapFile会先在索引中查找键的位置,然后再在数据部分中读取对应的值。 MapFile支持以下几种操作: - 写入数据:使用MapFile.Writer写入数据。 - 读取数据:使用MapFile.Reader读取数据。 - 修改数据:先删除旧数据,再写入新数据。 - 删除数据:使用MapFile.Writer删除数据。 下面是一个使用MapFile的示例代码: ``` Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path path = new Path("/path/to/mapfile"); MapFile.Writer writer = new MapFile.Writer(conf, fs, path.toString(), Text.class, IntWritable.class); try { for (int i = 0; i < 100; i++) { writer.append(new Text("key" + i), new IntWritable(i)); } } finally { writer.close(); } MapFile.Reader reader = new MapFile.Reader(fs, path.toString(), conf); try { Text key = new Text("key10"); IntWritable value = new IntWritable(); reader.get(key, value); System.out.println(key.toString() + ": " + value.get()); } finally { reader.close(); } ``` 上面的代码创建了一个MapFile,并向其中写入了100个键值对。键的类型为Text,值的类型为IntWritable。然后使用MapFile.Reader读取了键为"key10"的值,并打印出来。 总结一下,SequenceFile和MapFile都是Hadoop中常用的文件格式和数据结构,它们的出现都是为了解决大文件和小文件存储的问题。SequenceFile适用于存储序列化的键值对,而MapFile适用于对键进行快速查询和修改。在实际应用中,需要根据具体的需求选择合适的文件格式和数据结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郦琳凤Joyce

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值