xcparse 使用教程

xcparse 使用教程

xcparseCommand line tool & Swift framework for parsing Xcode 11+ xcresult项目地址:https://gitcode.com/gh_mirrors/xc/xcparse

1. 项目介绍

xcparse 是一个用于解析和处理 Xcode 工作区和项目文件的 Python 库。它支持现代 Xcode 项目文件中的所有对象,并且对许多遗留对象也提供了支持。该库的解析组件已经完成,并且可以用于生产环境。xcparse 还支持 Xcode 11 的 xcresult 格式,可以轻松处理复杂的操作,如解决依赖关系和构建顺序。

2. 项目快速启动

安装

使用 Homebrew 安装

在终端中输入以下命令:

brew install chargepoint/xcparse/xcparse
使用 Mint 安装

通过 Mint 安装时,可以在命令前加上 mint run ChargePoint/xcparse,例如:

mint run ChargePoint/xcparse xcparse <command> <options>

如果需要使用特定版本的 xcparse,可以添加版本标签:

mint run ChargePoint/xcparse@2.1.0 xcparse --help

基本使用

以下是一些常见的命令示例:

xcparse screenshots --os --model --test-plan-config /path/to/Test.xcresult /path/to/outputDirectory

该命令将导出截图,并根据选项将截图分类到不同的文件夹中。

3. 应用案例和最佳实践

案例1:解析 Xcode 项目文件

使用 xcparse 加载 Xcode 项目或工作区文件:

from xcparse import xcparse

root = xcparse(path_to_xcodeproj_or_xcworkspace)

获取项目列表:

project_list = root.projects()

获取方案列表:

scheme_list = root.schemes()

案例2:导出测试截图

使用 xcparse 导出测试截图,并根据不同的选项进行分类:

xcparse screenshots --os --model --test-plan-config /path/to/Test.xcresult /path/to/outputDirectory

4. 典型生态项目

xcparse 作为一个用于解析 Xcode 项目文件的工具,可以与其他 Xcode 相关的工具和库结合使用,例如:

  • XcodeGen: 用于生成 Xcode 项目文件的工具。
  • Fastlane: 用于自动化 iOS 和 Android 应用程序发布的工具。
  • CocoaPods: 用于管理 iOS 和 macOS 项目的依赖关系的工具。

通过结合这些工具,可以进一步提高 Xcode 项目的管理和自动化程度。

xcparseCommand line tool & Swift framework for parsing Xcode 11+ xcresult项目地址:https://gitcode.com/gh_mirrors/xc/xcparse

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅隽昀Mark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值