gRNAde: 几何深度学习在3D RNA逆向设计中的应用
项目介绍
gRNAde是一个用于3D RNA逆向设计的地理深度学习管道,类似于用于蛋白质设计的ProteinMPNN。该项目旨在通过几何图形的特征化和多状态GNN编码器来生成RNA序列,这些编码器对3D旋转平移和构象顺序具有等变性。gRNAde支持单状态和多状态固定骨架序列设计,并通过构象顺序不变的池化和序列设计来实现。
项目快速启动
安装环境
首先,克隆gRNAde仓库并设置Python环境:
# 克隆gRNAde仓库
cd ~ # 更改为你喜欢的下载位置
git clone https://github.com/chaitjo/geometric-rna-design.git
cd geometric-rna-design
# 安装mamba(一个更快的conda)
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
bash Miniforge3-Linux-x86_64.sh
source ~/bashrc
# 创建并激活新的环境
mamba create -n rna python=3.10
mamba activate rna
安装依赖
安装PyTorch和PyG:
# 在Nvidia GPU上安装PyTorch(确保硬件的CUDA版本)
mamba install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
# 安装PyTorch Geometric(确保与PyTorch和CUDA版本匹配)
pip install torch_geometric
pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-2.1.2+cu118.html
安装其他必需的依赖项:
# 安装其他Python库
mamba install jupyterlab matplotlib seaborn pandas biopython biotite -c conda-forge
pip install wandb gdown pyyaml ipdb python-dotenv tqdm cpdb-protein torchmetrics einops ml_collections mdanalysis MDAnalysisTests draw_rna arnie
下载和准备数据
下载RhoFold检查点:
cd ~/geometric-rna-design/tools/rhofold/
gdown https://drive.google.com/uc?id=1To2bjbhQLFx1k8hBOW5q1JFq6ut27XEv
应用案例和最佳实践
应用案例
gRNAde可以用于生成RNA序列,这些序列基于一个或多个3D RNA骨架构象。它支持单状态和多状态固定骨架序列设计,适用于RNA结构预测和设计。
最佳实践
- 数据预处理:确保所有输入的RNA结构数据经过适当的预处理,以符合gRNAde的输入要求。
- 模型训练:使用提供的配置文件和训练脚本进行模型训练,并根据需要调整超参数。
- 结果评估:使用评估脚本对模型生成的RNA序列进行评估,确保其符合预期的生物学特性。
典型生态项目
- ProteinMPNN:用于蛋白质设计的几何深度学习模型,与gRNAde在方法上有相似之处。
- EternaFold:用于RNA序列到二级结构预测的工具,可以与gRNAde结合使用,进行RNA结构的全面预测。
- X3DNA:用于RNA二级结构确定的工具,可以用于验证gRNAde生成的RNA序列的二级结构。
通过这些工具和方法的结合,可以构建一个完整的RNA结构预测和设计生态系统,适用于各种生物信息学研究和应用。