动态图处理资源集合

动态图处理资源集合 📚💻🌟

awesome-dynamic-graphsA collection of resources on dynamic/streaming/temporal/evolving graph processing systems, databases, data structures, datasets, and related academic and industrial work项目地址:https://gitcode.com/gh_mirrors/aw/awesome-dynamic-graphs

项目介绍

本项目【动态图处理资源集合](https://github.com/domargan/awesome-dynamic-graphs.git)是一个精心整理的资源库,专注于动态、流式、时序及演化的图数据处理系统。它包括数据库、数据结构、数据集以及相关的学术和工业界的工作成果。涵盖了从图处理系统到动态图数据分析、图数据库、图分析工具和算法等广泛领域,旨在为研究者和开发者提供一个全面的一站式资料来源。

项目快速启动

快速体验这个项目不需要直接运行代码,而是通过阅读和利用其中的文献和资源。然而,如果你想贡献或者探索更深层次的内容,以下是基本步骤:

  1. 克隆仓库:

    git clone https://github.com/domargan/awesome-dynamic-graphs.git
    
  2. 浏览资源: 进入克隆后的目录,你将看到一个README.md文件,其中包含了指向不同资源的链接。

  3. 开始学习与研究: 根据你的兴趣,点击链接阅读论文、查看图数据库或处理系统的文档,开始你的动态图学习之旅。

应用案例和最佳实践

虽然此项目主要作为资源索引,并不直接提供具体的案例实现,但你可以通过以下路径找到灵感:

  • 论文中的实例: 阅读推荐的论文,如《Graph Neural Networks Designed for Different Graph Types: A Survey》等,这些论文通常会提及应用示例。

  • 实际应用: 在工业界,动态图模型被应用于社交网络分析、金融交易监控、知识图谱更新等领域。理解这些场景如何使用动态图技术可以作为最佳实践的参考。

典型生态项目

  • Awesome-DynamicGraphLearning: 另一个相关项目,SpaceLearner/Awesome-DynamicGraphLearning,专门聚焦于深度学习在动态图上的应用,提供了论文与代码的集成列表,是本项目生态中重要的组成部分之一。

  • 图神经网络框架: 如DGL、PyTorch geometric等,虽然不是直接由这个项目维护,却是处理动态图任务的典型工具。结合这些框架,可以实践项目中提到的概念和技术。


以上就是关于【动态图处理资源集合】的基本引导。深入探索每个资源,你将在动态图处理的广阔世界中发现无尽的知识宝藏。

awesome-dynamic-graphsA collection of resources on dynamic/streaming/temporal/evolving graph processing systems, databases, data structures, datasets, and related academic and industrial work项目地址:https://gitcode.com/gh_mirrors/aw/awesome-dynamic-graphs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解佳岭Farley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值