All RAG Techniques: 开源项目介绍与使用教程
1. 项目介绍
本项目是一个开源的Python项目,旨在通过一系列Jupyter Notebook实现 Retrieval-Augmented Generation (RAG) 技术的简单易懂的版本。RAG 是一种结合了检索和生成技术的方法,用于提高自然语言处理(NLP)任务的性能。本项目不依赖于复杂的框架,而是使用如 openai、numpy、matplotlib 等熟悉的Python库,使代码更加可读、可修改、且具有教育意义。
2. 项目快速启动
以下是快速启动本项目的方法:
克隆仓库
首先,需要克隆项目仓库到本地:
git clone https://github.com/FareedKhan-dev/all-rag-techniques.git
cd all-rag-techniques
安装依赖
接着,安装项目所需的Python依赖:
pip install -r requirements.txt
设置 OpenAI API 密钥
获取一个Nebius AI的API密钥,并将其设置为环境变量:
export OPENAI_API_KEY='YOUR_NEBIUS_AI_API_KEY'
或者在Windows系统中:
setx OPENAI_API_KEY "YOUR_NEBIUS_AI_API_KEY"
或者在Python脚本或Notebook中:
import os
os.environ["OPENAI_API_KEY"] = "YOUR_NEBIUS_AI_API_KEY"
运行 Notebook
最后,使用Jupyter Notebook或JupyterLab打开任何一个 .ipynb
文件。每个Notebook都是独立的,可以单独运行。Notebook设计为可以按顺序执行。
3. 应用案例和最佳实践
本项目包含了多种RAG技术的实现,以下是一些应用案例和最佳实践:
- 简单 RAG: 作为基础的RAG实现,适合作为学习的起点。
- 语义分块: 根据语义相似性分割文本,以获得更有意义的内容块。
- 上下文丰富 RAG: 检索临近的内容块以提供更多的上下文信息。
- 文档增强 RAG: 从文本块生成问题,以增强检索过程。
每个技术都有对应的Jupyter Notebook,其中包含了详细的代码实现和注释。
4. 典型生态项目
本项目是一个典型的开源项目,它与其他开源项目共享以下特点:
- 模块化设计: 项目中的每个技术都作为一个独立的Notebook实现,便于理解和修改。
- 开源协议: 使用MIT协议,允许用户自由使用、修改和分享代码。
- 社区贡献: 鼓励社区成员贡献代码,提高项目的质量和多样性。
- 文档和教程: 提供详细的文档和教程,帮助用户快速上手和使用项目。
通过以上内容,我们希望本项目能帮助更多开发者了解和掌握RAG技术,并将其应用于实际的项目中。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考