All RAG Techniques: 开源项目介绍与使用教程

All RAG Techniques: 开源项目介绍与使用教程

all-rag-techniques Implementation of all RAG techniques in a simpler way all-rag-techniques 项目地址: https://gitcode.com/gh_mirrors/al/all-rag-techniques

1. 项目介绍

本项目是一个开源的Python项目,旨在通过一系列Jupyter Notebook实现 Retrieval-Augmented Generation (RAG) 技术的简单易懂的版本。RAG 是一种结合了检索和生成技术的方法,用于提高自然语言处理(NLP)任务的性能。本项目不依赖于复杂的框架,而是使用如 openai、numpy、matplotlib 等熟悉的Python库,使代码更加可读、可修改、且具有教育意义。

2. 项目快速启动

以下是快速启动本项目的方法:

克隆仓库

首先,需要克隆项目仓库到本地:

git clone https://github.com/FareedKhan-dev/all-rag-techniques.git
cd all-rag-techniques

安装依赖

接着,安装项目所需的Python依赖:

pip install -r requirements.txt

设置 OpenAI API 密钥

获取一个Nebius AI的API密钥,并将其设置为环境变量:

export OPENAI_API_KEY='YOUR_NEBIUS_AI_API_KEY'

或者在Windows系统中:

setx OPENAI_API_KEY "YOUR_NEBIUS_AI_API_KEY"

或者在Python脚本或Notebook中:

import os
os.environ["OPENAI_API_KEY"] = "YOUR_NEBIUS_AI_API_KEY"

运行 Notebook

最后,使用Jupyter Notebook或JupyterLab打开任何一个 .ipynb 文件。每个Notebook都是独立的,可以单独运行。Notebook设计为可以按顺序执行。

3. 应用案例和最佳实践

本项目包含了多种RAG技术的实现,以下是一些应用案例和最佳实践:

  • 简单 RAG: 作为基础的RAG实现,适合作为学习的起点。
  • 语义分块: 根据语义相似性分割文本,以获得更有意义的内容块。
  • 上下文丰富 RAG: 检索临近的内容块以提供更多的上下文信息。
  • 文档增强 RAG: 从文本块生成问题,以增强检索过程。

每个技术都有对应的Jupyter Notebook,其中包含了详细的代码实现和注释。

4. 典型生态项目

本项目是一个典型的开源项目,它与其他开源项目共享以下特点:

  • 模块化设计: 项目中的每个技术都作为一个独立的Notebook实现,便于理解和修改。
  • 开源协议: 使用MIT协议,允许用户自由使用、修改和分享代码。
  • 社区贡献: 鼓励社区成员贡献代码,提高项目的质量和多样性。
  • 文档和教程: 提供详细的文档和教程,帮助用户快速上手和使用项目。

通过以上内容,我们希望本项目能帮助更多开发者了解和掌握RAG技术,并将其应用于实际的项目中。

all-rag-techniques Implementation of all RAG techniques in a simpler way all-rag-techniques 项目地址: https://gitcode.com/gh_mirrors/al/all-rag-techniques

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解佳岭Farley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值